• DE
  • EN
  • FR
  • Base de données et galerie internationale d'ouvrages d'art et du génie civil

Publicité

A Discontinuous Unscented Kalman Filter for Non-Smooth Dynamic Problems

  1. Alavi (2015), "Structural Identifiability Analysis of Fractional Order Models with Applications in Battery Systems. arXiv preprint arXiv:1511.01402"
  2. Al-Hussein, Abdullah / Haldar, Achintya (2015): Novel Unscented Kalman Filter for Health Assessment of Structural Systems with Unknown Input. Dans: Journal of Engineering Mechanics (ASCE), v. 141, n. 7 (juillet 2015).

    https://doi.org/10.1061/(asce)em.1943-7889.0000926

  3. Astroza (2017), "Batch and Recursive Bayesian Estimation Methods for Nonlinear Structural System Identification", p. 341
  4. Au (2016), "Fundamental two-stage formulation for Bayesian system identification, part I: general theory" in Mech. Syst. Signal Process., v. 66 (2016), p. 31

    https://doi.org/10.1016/j.ymssp.2015.04.025

  5. Chatzi, Eleni N. / Smyth, Andrew W. (2009): The unscented Kalman filter and particle filter methods for nonlinear structural system identification with non-collocated heterogeneous sensing. Dans: Structural Control and Health Monitoring, v. 16, n. 1 (février 2009).

    https://doi.org/10.1002/stc.290

  6. Chatzi, Eleni N. / Smyth, Andrew W. (2013): Particle filter scheme with mutation for the estimation of time-invariant parameters in structural health monitoring applications. Dans: Structural Control and Health Monitoring, v. 20, n. 7 (juillet 2013).

    https://doi.org/10.1002/stc.1520

  7. Chatzi (2014), "Nonlinear System Identification: Particle_Based Methods", p. 1
  8. Chatzi, Eleni N. / Smyth, Andrew W. / Masri, Sami F. (2010): Experimental application of on-line parametric identification for nonlinear hysteretic systems with model uncertainty. Dans: Structural Safety, v. 32, n. 5 (septembre 2010).

    https://doi.org/10.1016/j.strusafe.2010.03.008

  9. Chatzis, M. N. / Chatzi, E. N. / Smyth, A. W. (2015): experimental validation of time domain system identification methods with fusion of heterogeneous data. Dans: Earthquake Engineering and Structural Dynamics, v. 44, n. 4 (10 avril 2015).

    https://doi.org/10.1002/eqe.2528

  10. Chatzis (2017), "A discontinuous extended Kalman filter for non-smooth dynamic problems" in Mech. Syst. Signal Process., v. 92 (2017), p. 13

    https://doi.org/10.1016/j.ymssp.2017.01.021

  11. Chatzis, Manolis N. / Chatzi, Eleni N. / Smyth, Andrew W. (2015): On the observability and identifiability of nonlinear structural and mechanical systems. Dans: Structural Control and Health Monitoring, v. 22, n. 3 (mars 2015).

    https://doi.org/10.1002/stc.1690

  12. Chatzis (), "Modeling of the 3d rocking problem" in Int. J. Nonlinear Mech., v. 47 (), p. 85

    https://doi.org/10.1016/j.ijnonlinmec.2012.02.004

  13. Chatzis, M. N. / Smyth, A. W. (2012): Robust Modeling of the Rocking Problem. Dans: Journal of Engineering Mechanics (ASCE), v. 138, n. 3 (mars 2012).

    https://doi.org/10.1061/(asce)em.1943-7889.0000329

  14. Chatzis, M. N. / Smyth, A. W. (2013): Three-Dimensional Dynamics of a Rigid Body with Wheels on a Moving Base. Dans: Journal of Engineering Mechanics (ASCE), v. 139, n. 4 (avril 2013).

    https://doi.org/10.1061/(asce)em.1943-7889.0000456

  15. Ding (2014), "Structural system identification with extended Kalman filter and orthogonal decomposition of excitation" in Math. Probl. Eng., v. 2014 (2014), p. 10

    https://doi.org/10.1155/2014/987694

  16. Diop (1991), ""Nonlinear observability, identifiability, and persistent trajectories,”", p. 714
  17. Ebrahimian, Hamed / Astroza, Rodrigo / Conte, Joel P. (2015): Extended Kalman filter for material parameter estimation in nonlinear structural finite element models using direct differentiation method. Dans: Earthquake Engineering and Structural Dynamics, v. 44, n. 10 (août 2015).

    https://doi.org/10.1002/eqe.2532

  18. Ebrahimian (2017), "Nonlinear finite element model updating for damage identification of civil structures using batch Bayesian estimation" in Mech. Syst. Signal Process., v. 84 (2017), p. 194

    https://doi.org/10.1016/j.ymssp.2016.02.002

  19. Eftekhar Azam, Saeed / Ghisi, Aldo / Mariani, Stefano (2013): Parallelized sigma-point Kalman filtering for structural dynamics. Dans: Computers & Structures, v. 114 (janvier 2013).

    https://doi.org/10.1016/j.compstruc.2011.11.004

  20. Farrar (2012), "Structural Health Monitoring: A Machine Learning Perspective"

    https://doi.org/10.1002/9781118443118

  21. Giannakopoulos, A. E. (1989): The return mapping method for the integration of friction constitutive relations. Dans: Computers & Structures, v. 32, n. 1 (janvier 1989).

    https://doi.org/10.1016/0045-7949(89)90081-3

  22. Greenbaum, Raphael J. Y. / Smyth, Andrew W. / Chatzis, Manolis N. (2016): Monocular Computer Vision Method for the Experimental Study of Three-Dimensional Rocking Motion. Dans: Journal of Engineering Mechanics (ASCE), v. 142, n. 1 (janvier 2016).

    https://doi.org/10.1061/(asce)em.1943-7889.0000972

  23. Hermann (1977), "Nonlinear controllability and observability" in IEEE Trans. Autom. Control, v. 22 (1977), p. 728

    https://doi.org/10.1109/TAC.1977.1101601

  24. Huang (2017), "Monitoring and modelling soil water dynamics using electromagnetic conductivity imaging and the ensemble Kalman filter" in Geoderma, v. 285 (2017), p. 76

    https://doi.org/10.1016/j.geoderma.2016.09.027

  25. Julier (1997), ""A new extension of the Kalman filter to nonlinear systems,”"

    https://doi.org/10.1117/12.280797

  26. Kakouris (2017), "Material point method for crack propagation in anisotropic media: a phase field approach" in Arch. Appl. Mech., p. 1

    https://doi.org/10.1007/s00419-017-1272-7

  27. Kalman (1963), "Mathematical description of linear dynamical systems" in J. Soc. Ind. Appl. Math. A Control, v. 1 (1963), p. 152

    https://doi.org/10.1137/0301010

  28. Kumar (2007), ""Colored-noise Kalman filter for vibration mitigation of position/attitude estimation systems,”"

    https://doi.org/10.2514/6.2007-6516

  29. Liu (1996), "A state decoupling approach to estimate unobservable tracking systems" in IEEE J. Oceanic Eng., v. 21 (1996), p. 256

    https://doi.org/10.1109/48.508156

  30. Ljung (1994), "On global identifiability for arbitrary model parametrizations" in Automatica, v. 30 (1994), p. 265

    https://doi.org/10.1016/0005-1098(94)90029-9

  31. Mariani (2005), "Impact induced composite delamination: state and parameter identification via joint and dual extended Kalman filters" in Comput. Methods Appl. Mech. Eng., v. 194 (2005), p. 5242

    https://doi.org/10.1016/j.cma.2005.01.007

  32. Novoselov (2005), ""Mitigating the effects of residual biases with Schmidt-Kalman filtering,”", p. 8
  33. Olivier, Audrey / Smyth, Andrew W. (2018): On the Performance of Online Parameter Estimation Algorithms in Systems with Various Identifiability Properties. Dans: Frontiers in Built Environment, v. 3 (février 2018).

    https://doi.org/10.3389/fbuil.2017.00014

  34. Olivier, Audrey / Smyth, Andrew W. (2017): Particle filtering and marginalization for parameter identification in structural systems. Dans: Structural Control and Health Monitoring, v. 24, n. 3 (mars 2017).

    https://doi.org/10.1002/stc.1874

  35. Omrani, R. / Hudson, R. E. / Taciroglu, E. (2013): Parametric Identification of Nondegrading Hysteresis in a Laterally and Torsionally Coupled Building Using an Unscented Kalman Filter. Dans: Journal of Engineering Mechanics (ASCE), v. 139, n. 4 (avril 2013).

    https://doi.org/10.1061/(asce)em.1943-7889.0000498

  36. Papadimitriou, Costas / Papadioti, Dimitra-Christina (2013): Component mode synthesis techniques for finite element model updating. Dans: Computers & Structures, v. 126 (septembre 2013).

    https://doi.org/10.1016/j.compstruc.2012.10.018

  37. Persis (2000), "On the observability codistributions of a nonlinear system" in Syst. Control Lett., v. 40 (2000), p. 297

    https://doi.org/10.1016/S0167-6911(00)00014-1

  38. Schmidt (1966), "Applications of state space methods to navigation problems" in Adv. Control Syst., v. 3 (1966), p. 293

    https://doi.org/10.1016/B978-1-4831-6716-9.50011-4

  39. Smyth, A. W. / Masri, S. F. / Chassiakos, A. G. / Caughey, T. K. (1999): On-Line Parametric Identification of MDOF Nonlinear Hysteretic Systems. Dans: Journal of Engineering Mechanics (ASCE), v. 125, n. 2 (février 1999).

    https://doi.org/10.1061/(ASCE)0733-9399(1999)125:2(133)

  40. Villaverde (2017), "Structural properties of dynamic systems biology models: identifiability, reachability, and initial conditions" in Processes, v. 5 (2017), p. 29

    https://doi.org/10.3390/pr5020029

  41. Villaverde (2016), "Structural identifiability of dynamic systems biology models" in PLoS Comput. Biol., v. 12 (2016), p. e1005153

    https://doi.org/10.1371/journal.pcbi.1005153

  42. Walter (1982), "Identifiability of State Space Models"

    https://doi.org/10.1007/978-3-642-61823-9

  43. Wan (2000), ""The unscented Kalman filter for nonlinear estimation,”", p. 153
  44. Worden, Keith / Farrar, Charles R. / Haywood, Jonathan / Todd, Michael (2008): A review of nonlinear dynamics applications to structural health monitoring. Dans: Structural Control and Health Monitoring, v. 15, n. 4 (juin 2008).

    https://doi.org/10.1002/stc.215

  45. Wriggers (1991), "Computational Contact Mechanics"
  46. Zhang (2016), "Fundamental two-stage formulation for Bayesian system identification, part II: application to ambient vibration data" in Mech. Syst. Signal Process., v. 66 (2016), p. 43

    https://doi.org/10.1016/j.ymssp.2016.03.024

  47. Zienkiewicz (2005), "The Finite Element Method for Solid and Structural Mechanics"

Publicité

  • Informations
    sur cette fiche
  • Reference-ID
    10379390
  • Publié(e) le:
    11.11.2019
  • Modifié(e) le:
    11.11.2019