0
  • DE
  • EN
  • FR
  • Base de données et galerie internationale d'ouvrages d'art et du génie civil

Publicité

Different fatigue design stress methods for common constructional details in cylindrical shells under axial loading – Influence of the r/t‐ratio and the shell thickness

Auteur(s): (Graz University of Technology Austria)
(Graz University of Technology Austria)
Médium: article de revue
Langue(s): anglais
Publié dans: ce/papers, , n. 3-4, v. 6
Page(s): 2475-2482
DOI: 10.1002/cepa.2385
Abstrait:

Cylindrical shells are frequently used in industrial constructions, for example in pipes, towers and masts and are often subjected to fatigue loading. Two common welded constructional details were studied: i) detail 1, the wall thickness transition with a circumferential butt weld and ii) detail 2, the welded ring stiffener. Both details are loaded with axial stresses due to N and/or M. In the new Eurocode prEN 1993‐1‐9:2021 three different fatigue design stress methods are provided in general. For these two constructional details, beside the modified nominal stress method, the hot spot stresses and effective notch stresses are determined with Finite‐Element‐Analyses, with variation of geometric parameters, like shell thickness t, radius‐over‐thickness‐ratio, t2/t1‐ratio at the thickness transition and thickness ts of the ring stiffener. Stress concentration factors for the different fatigue design stress methods are presented and the influence of the geometric parameters are investigated. Especially the difference between a plate with an infinite radius‐over‐thickness‐ratio and the pipe with a finite radius‐over‐thickness‐ratio is shown. Also, the influence of the shell thickness is investigated. For comparison of the three different methods the utilization factors of the hotspot stress method and the effective notch stress method are compared with those of the modified nominal stress method. A recommendation is given, which design stress method is appropriate for the two studied details, depending on the geometric parameters.

Structurae ne peut pas vous offrir cette publication en texte intégral pour l'instant. Le texte intégral est accessible chez l'éditeur. DOI: 10.1002/cepa.2385.
  • Informations
    sur cette fiche
  • Reference-ID
    10767373
  • Publié(e) le:
    17.04.2024
  • Modifié(e) le:
    17.04.2024
 
Structurae coopère avec
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine