Development of a Water Supplement System for a Tuned Liquid Damper under Excitation
Auteur(s): |
Congzhen Xiao
Zhenhong Wu Kai Chen Yi Tang Yalin Yan |
---|---|
Médium: | article de revue |
Langue(s): | anglais |
Publié dans: | Buildings, 27 avril 2023, n. 5, v. 13 |
Page(s): | 1115 |
DOI: | 10.3390/buildings13051115 |
Abstrait: |
Integrating existing liquid storage and supply tanks in buildings with tuned liquid dampers (TLDs) are significant for reducing the effective cost of TLDs. However, existing water supplement devices for fire-suppression liquid tanks may overfill with water, which leads to TLD mistuning. To overcome this problem, a passive liquid control system named TLD with a stable replenishment sub-tank system (TLD-SRS) is proposed. The system, which consists of an additional sub-tank connected to the main tank and a floating ball, replenishes liquid in the TLD automatically. The system can avoid vibration interference and maintain the normal operation of the passive replenishment system under usual wind loads. According to the studies of tuned liquid column dampers (TLCD), the proposed TLD with a stable replenishment sub-tank system (TLD-SRS) uses simple devices to ensure that the liquid level in the TLD is steady at the target liquid level with a floating ball. The TLD-SRS is verified on a large-scale TLD shaking table experiment. The overshoot, which is the percentage of liquid that exceeds the target volume of TLD is calculated during sloshing with wind loads. Compared with TLD installed with a regular liquid replenishment device, the proposed TLD-SRS significantly reduces the overshoot of liquid and acceleration on the roof of the building. |
Copyright: | © 2023 by the authors; licensee MDPI, Basel, Switzerland. |
License: | Cette oeuvre a été publiée sous la license Creative Commons Attribution 4.0 (CC-BY 4.0). Il est autorisé de partager et adapter l'oeuvre tant que l'auteur est crédité et la license est indiquée (avec le lien ci-dessus). Vous devez aussi indiquer si des changements on été fait vis-à-vis de l'original. |
8.37 MB
- Informations
sur cette fiche - Reference-ID
10728321 - Publié(e) le:
30.05.2023 - Modifié(e) le:
01.06.2023