^ Development of a Nonlinear Integer Optimization Model for Tenant Mix Layout in a Shopping Centre | Structurae
0
  • DE
  • EN
  • FR
  • Base de données et galerie internationale d'ouvrages d'art et du génie civil

Publicité

Development of a Nonlinear Integer Optimization Model for Tenant Mix Layout in a Shopping Centre

Auteur(s):

Médium: article de revue
Langue(s): anglais
Publié dans: Advances in Civil Engineering, , v. 2020
Page(s): 1-15
DOI: 10.1155/2020/2787351
Abstrait:

The tenant mix layout of shopping malls affects shopper consumption behaviour and the performance of malls. The main function of the tenant mix layout is to increase store sales by increasing footfall. However, although existing studies have shown the importance of the spatial clustering effect and the physical information about tenants, the authors of those studies did not properly consider both the spatial clustering effect and the physical information about tenants at the meantime. Through this study, we aimed to maximize the spillover effect of the stores in the shopping centre while considering both the spatial clustering effect and physical information about tenants. Therefore, we present a problem calledthe tenant mix problem, which is to determine the optimal tenant configuration scheme for existing shopping centre space segmentation to maximize the rental income of a shopping centre. To solve this problem, a nonlinear integer optimization model with defined characteristics was proposed and solved using a genetic algorithm. A shopping centre case study is also presented to verify the performance of the model.

Copyright: © Hongyue Lv and Ting-Kwei Wang et al.
License:

Cette oeuvre a été publiée sous la license Creative Commons Attribution 4.0 (CC-BY 4.0). Il est autorisé de partager et adapter l'oeuvre tant que l'auteur est crédité et la license est indiquée (avec le lien ci-dessus). Vous devez aussi indiquer si des changements on été fait vis-à-vis de l'original.

  • Informations
    sur cette fiche
  • Reference-ID
    10417173
  • Publié(e) le:
    31.03.2020
  • Modifié(e) le:
    02.06.2021