0
  • DE
  • EN
  • FR
  • Base de données et galerie internationale d'ouvrages d'art et du génie civil

Publicité

Development and Validation of Building Control Algorithm Energy Management

Auteur(s):

Médium: article de revue
Langue(s): anglais
Publié dans: Buildings, , n. 3, v. 11
Page(s): 131
DOI: 10.3390/buildings11030131
Abstrait:

In this paper, a building control algorithm is proposed to reduce the electricity consumption of a building with a variable refrigerant flow (VRF) system. The algorithm uses sequence-to-sequence long short_term memory (seq2seq LSTM) to set target electricity consumption, and uses a VRF air conditioner system to reduce electricity consumption. After setting target electricity consumption, the algorithm is applied as a method of updating target electricity consumption. In addition, we propose two methods to increase the performance of the seq2seq LSTM model. First, among the feature selection methods, random forest is used to select, among the numerous features of the data, only those features that are most relevant to the predicted value. Second, we use Bayesian optimization, which selects the optimal hyperparameter that shows the best model performance. In order to control the air conditioners, the priority of air conditioners is designated, the method of prioritization being the analytical hierarchy process (AHP). In this study, comparison of the performance of seq2seq LSTM model with and without Bayesian optimization proved that the use of Bayesian optimization achieved good performance. Simulation and demonstration experiments using the algorithm were also conducted, and showed that building electricity consumption decreased in a similar manner to the reduction rate by means of the algorithm.

Copyright: © 2021 by the authors; licensee MDPI, Basel, Switzerland.
License:

Cette oeuvre a été publiée sous la license Creative Commons Attribution 4.0 (CC-BY 4.0). Il est autorisé de partager et adapter l'oeuvre tant que l'auteur est crédité et la license est indiquée (avec le lien ci-dessus). Vous devez aussi indiquer si des changements on été fait vis-à-vis de l'original.

  • Informations
    sur cette fiche
  • Reference-ID
    10602532
  • Publié(e) le:
    17.04.2021
  • Modifié(e) le:
    02.06.2021
 
Structurae coopère avec
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine