0
  • DE
  • EN
  • FR
  • Base de données et galerie internationale d'ouvrages d'art et du génie civil

Publicité

Development and Characterization of Alkali-Activated Lithium Slag-Fly Ash Composite Cement

Auteur(s):



ORCID

Médium: article de revue
Langue(s): anglais
Publié dans: Buildings, , n. 12, v. 14
Page(s): 3766
DOI: 10.3390/buildings14123766
Abstrait:

As the demand for environmental sustainability grows in the global construction industry, traditional cement production faces significant challenges due to high energy consumption and substantial CO₂ emissions. Therefore, developing low-carbon, high-performance alternative cementitious materials has become a research focus. This paper proposes a new low-carbon cement (alkali-activated lithium slag-fly ash composite cement, ALFC) as a substitute for traditional cement. First, the alkali activation reactivity of lithium slag (LS) is enhanced through calcination and grinding, revealing the reasons behind its improved reactivity. Then, alkali-activated LS and fly ash were partially used to replace cement to prepare ALFC, and the effects of the water-to-binder ratio (W/B), LS content, and NaOH addition on the flowability and mechanical properties of ALFC were investigated. XRD, SEM/EDS, and TG/DTG analyses were conducted to examine its hydration products and microstructure, revealing the hydration mechanism. The results show that the flowability of ALFC increases with W/B but decreases with a higher LS content. When W/B is 0.325 and the LS content is 25 wt.%, flowability reaches 200 mm, meeting construction requirements. LS calcined at 700 °C for 1 h significantly enhanced ALFC’s 90-day flexural and compressive strengths by 39.73% and 58.47%, respectively. The primary hydration products of ALFC are C-S-H, N-A-S-H, and C-A-S-H gels, with their content increasing as the NaOH concentration rises. The optimal NaOH concentration and LS content for ALFC are 2 mol/L and 25 wt.%, respectively.

Copyright: © 2024 by the authors; licensee MDPI, Basel, Switzerland.
License:

Cette oeuvre a été publiée sous la license Creative Commons Attribution 4.0 (CC-BY 4.0). Il est autorisé de partager et adapter l'oeuvre tant que l'auteur est crédité et la license est indiquée (avec le lien ci-dessus). Vous devez aussi indiquer si des changements on été fait vis-à-vis de l'original.

  • Informations
    sur cette fiche
  • Reference-ID
    10810123
  • Publié(e) le:
    17.01.2025
  • Modifié(e) le:
    25.01.2025
 
Structurae coopère avec
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine