Developing a Machine-Learning-Based Automatic Incident Detection System for Traffic Safety: Promises and Limitations
Auteur(s): |
Osama ElSahly
Akmal Abdelfatah |
---|---|
Médium: | article de revue |
Langue(s): | anglais |
Publié dans: | Infrastructures, 8 octobre 2024, n. 10, v. 9 |
Page(s): | 170 |
DOI: | 10.3390/infrastructures9100170 |
Abstrait: |
This study presents a novel, machine-learning-based Automatic Incident Detection (AID) system for freeways. Through a comprehensive analysis of existing AID systems, the paper identifies their limitations and key performance metrics. VISSIM, a traffic simulation software, is employed to generate diverse, realistic traffic data incorporating factors significantly impacting AID performance. The developed system utilizes an Artificial Neural Network (ANN) trained via RapidMiner software. The ANN is designed to learn and differentiate normal and incident traffic patterns. Training yields a Detection Rate (DR) of 95.6%, a False Alarm Rate (FAR) of 1.01%, and a Mean Time to Detection (MTTD) of 0.89 min. Testing demonstrates continued effectiveness with a DR of 100%, a FAR of 1.29%, and a MTTD of 1.6 min. Furthermore, a sensitivity analysis is conducted to assess the influence of individual factors on system performance. Based on these findings, recommendations for enhancing AID systems are provided, promoting improved traffic safety and incident management. This research empowers transportation authorities with valuable insights to implement effective incident detection strategies, ultimately contributing to safer and more efficient freeways. |
Copyright: | © 2024 the Authors. Licensee MDPI, Basel, Switzerland. |
License: | Cette oeuvre a été publiée sous la license Creative Commons Attribution 4.0 (CC-BY 4.0). Il est autorisé de partager et adapter l'oeuvre tant que l'auteur est crédité et la license est indiquée (avec le lien ci-dessus). Vous devez aussi indiquer si des changements on été fait vis-à-vis de l'original. |
2.27 MB
- Informations
sur cette fiche - Reference-ID
10806451 - Publié(e) le:
10.11.2024 - Modifié(e) le:
10.11.2024