Determining Tensile Strength of Rock by the Direct Tensile, Brazilian Splitting, and Three-Point Bending Methods: A Comparative Study
Auteur(s): |
Zhengjun Huang
Ying Zhang Yuan Li Dong Zhang Tong Yang Zhili Sui |
---|---|
Médium: | article de revue |
Langue(s): | anglais |
Publié dans: | Advances in Civil Engineering, janvier 2021, v. 2021 |
Page(s): | 1-16 |
DOI: | 10.1155/2021/5519230 |
Abstrait: |
To accurately obtain the tensile strength of rock and fully understand the evolution process of rock failure is one of the key issues to the research of rock mechanics theories and rock mass engineering applications. Using direct tensile, Brazilian splitting, and three-point bending test methods, we performed indoor and numerical simulation experiments on marble, granite, and diabase and investigated the tensile strength and damage evolution process of several typical rocks in the three different tests. Our experiments demonstrate that (1) the strength is about 10% greater in the Brazilian splitting than in the direct tensile, while the tensile modulus is lower; it is the highest in the three-point bending, which is actually subjected to the bending moment and suggested as one of the indexes to evaluate the tensile strength of rock; (2) the strength in splitting tests is strikingly different, while the strain law is basically similar; the direct tensile test with precut slits is more attainable than that with no-cut slits, with an uninfluenced strength; (3) the failure modes of rocks using different methods are featured by different lithology, while their final modes are basically the same under the same method; (4) PFC and RFPA numerical simulation tests are effective to analyze the internal crack multiplication and acoustic emission changes in the rock as well as the damage evolution process of rock in different tests. |
Copyright: | © Zhengjun Huang et al. |
License: | Cette oeuvre a été publiée sous la license Creative Commons Attribution 4.0 (CC-BY 4.0). Il est autorisé de partager et adapter l'oeuvre tant que l'auteur est crédité et la license est indiquée (avec le lien ci-dessus). Vous devez aussi indiquer si des changements on été fait vis-à-vis de l'original. |
5.34 MB
- Informations
sur cette fiche - Reference-ID
10609904 - Publié(e) le:
08.06.2021 - Modifié(e) le:
17.02.2022