0
  • DE
  • EN
  • FR
  • Base de données et galerie internationale d'ouvrages d'art et du génie civil

Publicité

Design and performance investigation of a novel 3DOF compact MR damper

Auteur(s): ORCID




Médium: article de revue
Langue(s): anglais
Publié dans: Smart Materials and Structures, , n. 12, v. 31
Page(s): 125020
DOI: 10.1088/1361-665x/aca12f
Abstrait:

Magnetorheological (MR) fluid based dampers have been established as an alternative to classical hydraulic dampers with proportional electromagnetic valves under vibration processes which demand adaptive damping forces. Almost all MR-dampers are spatially 1-degree-of-freedom (DOF) dampers, having only one axis or direction of damping force generation. In many technical applications there exist movements in more than one spatial DOF, eventually necessitating more than one damper. Because of this, the damping is required not only in one but in more spatial directions, yet adjustable. In this work, a new design of a spatial 3DOF MR damper is proposed to allow damping in three directions within one damping device. The underlying motivation is to spatially integrate three damping directions in one device to potentially reduce installation space compared to three separate 1DOF dampers. The basic idea of the construction is to use one fluid chamber with several spatially distributed control elements at different positions of the fluid chamber. The control elements are electromagnets, generating the magnetic field in the fluid at different positions so that in total three spatial DOFs can be damped individually. Experiments and investigation are made, where the damper’s behavior are analyzed not only in one single DOF but also in more than one DOF. It is shown, that the damping concept can generate damping in all three spatial DOFs, both individually or together. Moreover, the damping can be generated to be dominant in one specific direction, meanwhile minimum in the other direction orthogonal to it.

Copyright: © 2022 Aditya Suryadi Tan, Fabian Rabel, Thomas Sattel, Yannick Lee Sill, Janusz Goldasz
License:

Cette oeuvre a été publiée sous la license Creative Commons Attribution 4.0 (CC-BY 4.0). Il est autorisé de partager et adapter l'oeuvre tant que l'auteur est crédité et la license est indiquée (avec le lien ci-dessus). Vous devez aussi indiquer si des changements on été fait vis-à-vis de l'original.

  • Informations
    sur cette fiche
  • Reference-ID
    10695333
  • Publié(e) le:
    10.12.2022
  • Modifié(e) le:
    07.02.2024
 
Structurae coopère avec
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine