0
  • DE
  • EN
  • FR
  • Base de données et galerie internationale d'ouvrages d'art et du génie civil

Publicité

Design and performance analysis of high-speed on/off valve based on energy-coupled actuator

Auteur(s):

ORCID
Médium: article de revue
Langue(s): anglais
Publié dans: Smart Materials and Structures, , n. 6, v. 33
Page(s): 065029
DOI: 10.1088/1361-665x/ad4939
Abstrait:

The development digital hydraulics demands higher performance on high-speed on/off valves. In order to fully exploit the energy saving advantages of digital hydraulics, advanced high-speed valves are expected to possess a fast response and a large nominal flow rate simultaneously. Energy-coupled-actuator (ECA) utilizes the shear working mode of magnetic rheological fluid to achieve reciprocating motion of the valve spool through the coupling/decoupling of a pair of disks and a translational piece and its driving force is not affected by the valve spool’s position. The reported advantages of ECA meets the design requirements of actuators for high-speed on/off valve. This study gives the detailed design proposal of high-speed valve based on ECA (ECAV). The work also established a multi-physics coupled model for ECAV, calculated the key parameters of the valve driving system, and predicted the switching performance of ECAV. Finally, a prototype of ECAV with updated sealing solution between the actuator and valve block was fabricated and experimental tested. The results indicate that for current ECAV prototype successfully established 40 l min−1@5 bar (1.5 mm stroke) using response time less than 7 ms. Moreover, the prototype only consumed 14 ms to reach a long stroke of 5 mm with a significantly increased ratio of stroke over response time.

Structurae ne peut pas vous offrir cette publication en texte intégral pour l'instant. Le texte intégral est accessible chez l'éditeur. DOI: 10.1088/1361-665x/ad4939.
  • Informations
    sur cette fiche
  • Reference-ID
    10783940
  • Publié(e) le:
    20.06.2024
  • Modifié(e) le:
    20.06.2024
 
Structurae coopère avec
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine