Design and Numerical Simulation of a Reusable Steel Column Base Connection with Pinned Energy Dissipators
Auteur(s): |
Qi Ma
(Hong Kong Polytechnic University Hong Kong China)
Tak‐Ming Chan (Hong Kong Polytechnic University Hong Kong China) |
---|---|
Médium: | article de revue |
Langue(s): | anglais |
Publié dans: | ce/papers, septembre 2023, n. 3-4, v. 6 |
Page(s): | 346-351 |
DOI: | 10.1002/cepa.2357 |
Abstrait: |
This paper presents a reusable steel column base connection in moment resisting frame (MRF), which involves simple yet effective pinned steel plates to dissipate seismic energy and makes full use of the self‐weight of the column to provide re‐centring force. Permanent deformations of dissipative plates may induce non‐negligible lateral drifts of the column. By virtue of the pinned design, additional rotational degrees of freedom are added to mitigate the resistance to the restoring behaviour. Based on the proposed connection, the column can rock back to its original position after earthquake‐generated deformations while remaining within the elastic range. Moreover, the proposed connection can be conveniently installed and replaced to facilitate adaptability and reusability. The mechanical performances of the proposed column base connection under monotonic and cyclic loadings are described by simplified analytical models. A refined three‐dimensional finite element (FE) model is developed. The results of FE modelling help verify the feasibility of the simplified analytical models. Besides, the self‐centring capacity, energy dissipation capacity and low damage behaviour of the proposed connection are then evaluated by the FE models. |
- Informations
sur cette fiche - Reference-ID
10767188 - Publié(e) le:
17.04.2024 - Modifié(e) le:
17.04.2024