A Depth Camera-Based Intelligent Method for Identifying and Quantifying Pavement Diseases
Auteur(s): |
Hao Bai
Xiangyu Hu Fei Chen Zhiyong Liao Kai Li Guangjiong Ran Fengni Wei |
---|---|
Médium: | article de revue |
Langue(s): | anglais |
Publié dans: | Advances in Civil Engineering, janvier 2022, v. 2022 |
Page(s): | 1-13 |
DOI: | 10.1155/2022/4992321 |
Abstrait: |
In this study, a depth camera-based intelligence method is proposed. First, road damage images are collected and transformed into a training set. Then training, defect detection, defect extraction, and classification are performed. In addition, a YOLOv5 is used to create, train, validate, and test the label database. The method does not require a predetermined distance between the measurement target and the sensor; can be applied to moving scenes; and is important for the detection, classification, and quantification of pavement diseases. The results show that the sensor can achieve plane fitting at investigated working distances by means of a deep learning network. In addition, two pavement examples show that the detection method can save a lot of manpower and improve the detection efficiency with certain accuracy. |
Copyright: | © Hao Bai et al. et al. |
License: | Cette oeuvre a été publiée sous la license Creative Commons Attribution 4.0 (CC-BY 4.0). Il est autorisé de partager et adapter l'oeuvre tant que l'auteur est crédité et la license est indiquée (avec le lien ci-dessus). Vous devez aussi indiquer si des changements on été fait vis-à-vis de l'original. |
5.04 MB
- Informations
sur cette fiche - Reference-ID
10663828 - Publié(e) le:
09.05.2022 - Modifié(e) le:
01.06.2022