0
  • DE
  • EN
  • FR
  • Base de données et galerie internationale d'ouvrages d'art et du génie civil

Publicité

Deformation Mechanism and Control Technology of the Surrounding Rock of the Floor Roadway under the Influence of Mining

Auteur(s):


Médium: article de revue
Langue(s): anglais
Publié dans: Advances in Civil Engineering, , v. 2020
Page(s): 1-15
DOI: 10.1155/2020/6613039
Abstrait:

Deformation and failure mechanism of the surrounding rock of the floor roadway under the influence of working face mining is complicated, and roadway control is difficult. The floor roadway of the 11123 working face in Pan’er Mine is taken as the research object of this study based on semi-infinite body theory of elastic mechanics to establish a mechanical model along the advancing direction of the working face and derive the stress expression of any point in the affected area of floor mining. According to the theoretical results, effective reinforcement and support schemes are then proposed. FLAC3D numerical simulation analyzes the stress and deformation of the surrounding rock of the floor roadway before and after the reinforcement. The numerical simulation results showed that (1) mining abutment pressure of the overlying working face forms a certain range of stress concentration on the roof and two sides of the roadway and will cause deformation and damage to the floor roadway and (2) overall bearing capacity of the surrounding rock of the roadway is significantly improved, and surface displacement of the floor roadway is reduced by 64 mm through the reinforcement and support of the floor roadway. On-site monitoring data of the floor roadway in the 11123 working face of Pan’er Mine showed that the maximum displacement of the roadway roof and two sides is controlled at approximately 80 mm, and the surrounding rock deformation of the roadway is appropriately controlled to meet the needs of safe production.

Copyright: © Qingchong Zhao et al.
License:

Cette oeuvre a été publiée sous la license Creative Commons Attribution 4.0 (CC-BY 4.0). Il est autorisé de partager et adapter l'oeuvre tant que l'auteur est crédité et la license est indiquée (avec le lien ci-dessus). Vous devez aussi indiquer si des changements on été fait vis-à-vis de l'original.

  • Informations
    sur cette fiche
  • Reference-ID
    10536062
  • Publié(e) le:
    01.01.2021
  • Modifié(e) le:
    02.06.2021
 
Structurae coopère avec
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine