0
  • DE
  • EN
  • FR
  • Base de données et galerie internationale d'ouvrages d'art et du génie civil

Publicité

Deep super resolution crack network (SrcNet) for improving computer vision–based automated crack detectability in in situ bridges

Auteur(s):


Médium: article de revue
Langue(s): anglais
Publié dans: Structural Health Monitoring, , n. 4, v. 20
Page(s): 147592172091722
DOI: 10.1177/1475921720917227
Abstrait:

This article proposes a new end-to-end deep super-resolution crack network (SrcNet) for improving computer vision–based automated crack detectability. The digital images acquired from large-scale civil infrastructures for crack detection using unmanned robots often suffer from motion blur and lack of pixel resolution, which may degrade the corresponding crack detectability. The proposed SrcNet is able to significantly enhance the crack detectability by augmenting the pixel resolution of the raw digital image through deep learning. SrcNet basically consists of two phases: phase I—deep learning–based super resolution (SR) image generation and phase II—deep learning–based automated crack detection. Once the raw digital images are obtained from a target bridge surface, phase I of SrcNet generates the corresponding SR images to the raw digital images. Then, phase II automatically detects cracks from the generated SR images, making it possible to remarkably improve the crack detectability. SrcNet is experimentally validated using the digital images obtained using a climbing robot and an unmanned aerial vehicle from in situ concrete bridges located in South Korea. The validation test results reveal that the proposed SrcNet shows 24% better crack detectability compared to the crack detection results using the raw digital images.

Structurae ne peut pas vous offrir cette publication en texte intégral pour l'instant. Le texte intégral est accessible chez l'éditeur. DOI: 10.1177/1475921720917227.
  • Informations
    sur cette fiche
  • Reference-ID
    10562429
  • Publié(e) le:
    11.02.2021
  • Modifié(e) le:
    09.07.2021
 
Structurae coopère avec
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine