0
  • DE
  • EN
  • FR
  • Base de données et galerie internationale d'ouvrages d'art et du génie civil

Publicité

Deep semi-supervised generative adversarial fault diagnostics of rolling element bearings

Auteur(s):




Médium: article de revue
Langue(s): anglais
Publié dans: Structural Health Monitoring, , n. 2, v. 19
Page(s): 390-411
DOI: 10.1177/1475921719850576
Abstrait:

With the availability of cheaper multisensor suites, one has access to massive and multidimensional datasets that can and should be used for fault diagnosis. However, from a time, resource, engineering, and computational perspective, it is often cost prohibitive to label all the data streaming into a database in the context of big machinery data, that is, massive multidimensional data. Therefore, this article proposes both a fully unsupervised and a semi-supervised deep learning enabled generative adversarial network-based methodology for fault diagnostics. Two public datasets of vibration data from rolling element bearings are used to evaluate the performance of the proposed methodology for fault diagnostics. The results indicate that the proposed methodology is a promising approach for both unsupervised and semi-supervised fault diagnostics.

Structurae ne peut pas vous offrir cette publication en texte intégral pour l'instant. Le texte intégral est accessible chez l'éditeur. DOI: 10.1177/1475921719850576.
  • Informations
    sur cette fiche
  • Reference-ID
    10562301
  • Publié(e) le:
    11.02.2021
  • Modifié(e) le:
    19.02.2021
 
Structurae coopère avec
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine