0
  • DE
  • EN
  • FR
  • Base de données et galerie internationale d'ouvrages d'art et du génie civil

Publicité

Auteur(s):
ORCID
ORCID

ORCID
Médium: article de revue
Langue(s): anglais
Publié dans: Buildings, , n. 11, v. 11
Page(s): 548
DOI: 10.3390/buildings11110548
Abstrait:

Electric water heaters represent 14% of the electricity consumption in residential buildings. An average household in the United States (U.S.) spends about USD 400–600 (0.45 ¢/L–0.68 ¢/L) on water heating every year. In this context, water heaters are often considered as a valuable asset for Demand Response (DR) and building energy management system (BEMS) applications. To this end, this study proposes a model-free deep reinforcement learning (RL) approach that aims to minimize the electricity cost of a water heater under a time-of-use (TOU) electricity pricing policy by only using standard DR commands. In this approach, a set of RL agents, with different look ahead periods, were trained using the deep Q-networks (DQN) algorithm and their performance was tested on an unseen pair of price and hot water usage profiles. The testing results showed that the RL agents can help save electricity cost in the range of 19% to 35% compared to the baseline operation without causing any discomfort to end users. Additionally, the RL agents outperformed rule-based and model predictive control (MPC)-based controllers and achieved comparable performance to optimization-based control.

Copyright: © 2021 by the authors; licensee MDPI, Basel, Switzerland.
License:

Cette oeuvre a été publiée sous la license Creative Commons Attribution 4.0 (CC-BY 4.0). Il est autorisé de partager et adapter l'oeuvre tant que l'auteur est crédité et la license est indiquée (avec le lien ci-dessus). Vous devez aussi indiquer si des changements on été fait vis-à-vis de l'original.

  • Informations
    sur cette fiche
  • Reference-ID
    10639356
  • Publié(e) le:
    30.11.2021
  • Modifié(e) le:
    02.12.2021
 
Structurae coopère avec
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine