0
  • DE
  • EN
  • FR
  • Base de données et galerie internationale d'ouvrages d'art et du génie civil

Publicité

Deep machine learning for detection of acoustic wave reflections

Auteur(s):



Médium: article de revue
Langue(s): anglais
Publié dans: Structural Health Monitoring, , n. 5, v. 19
Page(s): 1340-1350
DOI: 10.1177/1475921719881642
Abstrait:

Acoustic emission signals are information rich and can be used to estimate the size and location of damage in structures. However, many existing algorithms may be deceived by indirectly propagated acoustic emission waves which are modulated by reflection boundaries within the structures. We propose two deep learning models to identify such waves such that existing algorithms for damage detection and localization may be used. The first approach uses long short_term memory recurrent neural networks to learn distinct patterns directly from the time-series data. In the second approach, we transform the time-series data into spectrograms and utilize convolutional neural networks to perform binary classification by leveraging spectro-temporal features. We achieved 80% classification accuracy using long short_term memory and near-perfect accuracy using convolutional neural networks on a dataset of acoustic emission signals generated by the Hsu-Nielsen sources. Both long short_term memory and convolutional neural network models were able to learn general and context-specific features of the direct and reflected acoustic emission waves. Once accurately identified, the indirectly propagating waves are filtered out while the directly propagating waves are used for source location using existing methods.

Structurae ne peut pas vous offrir cette publication en texte intégral pour l'instant. Le texte intégral est accessible chez l'éditeur. DOI: 10.1177/1475921719881642.
  • Informations
    sur cette fiche
  • Reference-ID
    10562360
  • Publié(e) le:
    11.02.2021
  • Modifié(e) le:
    19.02.2021
 
Structurae coopère avec
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine