0
  • DE
  • EN
  • FR
  • Base de données et galerie internationale d'ouvrages d'art et du génie civil

Publicité

Deep Learning Joint Inversion of Electrical Data for Ahead-Prospecting in Tunneling

Auteur(s):
ORCID
ORCID
ORCID

Médium: article de revue
Langue(s): anglais
Publié dans: Advances in Civil Engineering, , v. 2023
Page(s): 1-10
DOI: 10.1155/2023/5639207
Abstrait:

Water inrush has become one of the bottlenecks restricting tunnel construction. Among various advanced forecasting techniques, the direct current method is more cost-effective and sensitive to water-bearing structures. It has been widely used in exploring water inrush disasters in practical engineering. Although traditional resistivity linear inversion methods are reasonably practical, they usually suffer from volume effects and cannot accurately locate the location and morphology of water-bearing bodies. Therefore, nonlinear techniques such as deep learning have recently become popular to directly approximate the inversion function by learning the mapping of apparent resistivity data to the geoelectric model. This work presents a novel deep learning-based electrical approach that combines resistivity and polarizability to estimate water-bearing location and morphology. Specifically, we design an encoder-decoder network. A shared encoder extracts features from the input data, two encoders output resistivity, and polarizability models, respectively, and fine-tuned collinear regularization for both outputs reduces solutions’ multiplicity. Compared with traditional linear inversion methods and independent parameter inversion, our proposed joint inversion method shows superiority in locating and delineating anomalous bodies.

Copyright: © Peng Jiang et al. et al.
License:

Cette oeuvre a été publiée sous la license Creative Commons Attribution 4.0 (CC-BY 4.0). Il est autorisé de partager et adapter l'oeuvre tant que l'auteur est crédité et la license est indiquée (avec le lien ci-dessus). Vous devez aussi indiquer si des changements on été fait vis-à-vis de l'original.

  • Informations
    sur cette fiche
  • Reference-ID
    10710939
  • Publié(e) le:
    21.03.2023
  • Modifié(e) le:
    10.05.2023
 
Structurae coopère avec
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine