0
  • DE
  • EN
  • FR
  • Base de données et galerie internationale d'ouvrages d'art et du génie civil

Publicité

A deep-learning framework considering multiple motifs for traffic travel time prediction

Auteur(s): (State Key Laboratory of Structural Analysis for Industrial Equipment, School of Automotive Engineering, Dalian University of Technology, Dalian, PR China)
(State Key Laboratory of Structural Analysis for Industrial Equipment, School of Automotive Engineering, Dalian University of Technology, Dalian, PR China)
(State Key Laboratory of Structural Analysis for Industrial Equipment, School of Automotive Engineering, Dalian University of Technology, Dalian, PR China)
(State Key Laboratory of Structural Analysis for Industrial Equipment, School of Automotive Engineering, Dalian University of Technology, Dalian, PR China)
(State Key Laboratory of Structural Analysis for Industrial Equipment, School of Automotive Engineering, Dalian University of Technology, Dalian, PR China (corresponding author: ))
Médium: article de revue
Langue(s): anglais
Publié dans: Proceedings of the Institution of Civil Engineers - Transport, , n. 5, v. 177
Page(s): 1-12
DOI: 10.1680/jtran.23.00006
Structurae ne peut pas vous offrir cette publication en texte intégral pour l'instant. Le texte intégral est accessible chez l'éditeur. DOI: 10.1680/jtran.23.00006.
  • Informations
    sur cette fiche
  • Reference-ID
    10727761
  • Publié(e) le:
    30.05.2023
  • Modifié(e) le:
    31.08.2024
 
Structurae coopère avec
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine