0
  • DE
  • EN
  • FR
  • Base de données et galerie internationale d'ouvrages d'art et du génie civil

Publicité

A Deep-Learning-Based Meta-Modeling Workflow for Thermal Load Forecasting in Buildings: Method and a Case Study

Auteur(s):
ORCID



ORCID
Médium: article de revue
Langue(s): anglais
Publié dans: Buildings, , n. 2, v. 12
Page(s): 177
DOI: 10.3390/buildings12020177
Abstrait:

This paper proposes a meta-modeling workflow to forecast the cooling and heating loads of buildings at individual and district levels in the early design stage. Seven input variables, with large impacts on building loads, are selected for designing meta-models to establish the MySQL database. The load profiles of office, commercial, and hotel models are simulated with EnergyPlus in batches. A sequence-to-sequence (Seq2Seq) model based on the deep-learning method of a one-dimensional convolutional neural network (1D-CNN) is introduced to achieve rapid forecasting of all-year hourly building loads. The method performs well with the load effective hour rate (LEHR) of around 90% and MAPE less than 10%. Finally, this meta-modeling workflow is applied to a district as a case study in Shanghai, China. The forecasting results well match the actual loads with R2 of 0.9978 and 0.9975, respectively, for the heating and cooling load. The LEHR value of all-year hourly forecasting loads is 98.4%, as well as an MAPE of 4.4%. This meta-modeling workflow expands the applicability of building-physics-based methods and improves the time resolution of conventional data-driven methods. It shows small forecasting errors and fast computing speed while meeting the required precision and convenience of engineering in the building early design stage.

Copyright: © 2022 by the authors; licensee MDPI, Basel, Switzerland.
License:

Cette oeuvre a été publiée sous la license Creative Commons Attribution 4.0 (CC-BY 4.0). Il est autorisé de partager et adapter l'oeuvre tant que l'auteur est crédité et la license est indiquée (avec le lien ci-dessus). Vous devez aussi indiquer si des changements on été fait vis-à-vis de l'original.

  • Informations
    sur cette fiche
  • Reference-ID
    10657742
  • Publié(e) le:
    17.02.2022
  • Modifié(e) le:
    01.06.2022
 
Structurae coopère avec
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine