0
  • DE
  • EN
  • FR
  • Base de données et galerie internationale d'ouvrages d'art et du génie civil

Publicité

A deep learning approach for anomaly identification in PZT sensors using point contact method

Auteur(s): ORCID
ORCID
ORCID
Médium: article de revue
Langue(s): anglais
Publié dans: Smart Materials and Structures, , n. 9, v. 32
Page(s): 095027
DOI: 10.1088/1361-665x/acee37
Abstrait:

The implementation of piezoelectric sensors is degraded due to surface defects, delamination, and extreme weathering conditions, to mention a few. Hence, the sensor needs to be diagnosed before the efficacious implementation in the structural health monitoring (SHM) framework. To rescue the problem, a novel experimental method based on Coulomb coupling is utilised to visualise the evolution of elastic waves and interaction with the surface anomaly in the lead zirconate titanate (PZT) substrate. Recently, machine learning (ML) has been expeditiously becoming an essential technology for scientific computing, with several possibilities to advance the field of SHM. This study employs a deep learning-based autoencoder neural network in conjunction with image registration and peak signal-to-noise ratio (PSNR) to diagnose the surface anomaly in the PZT substrate. The autoencoder extracts the significant damage-sensitive features from the complex waveform big data. Further, it provides a nonlinear input–output model that is well suited for the non-linear interaction of the wave with the surface anomaly and boundary of the substrate. The measured time-series waveform data is provided as input into the autoencoder network. The mean absolute error (MAE) between the input and output of the deep learning model is evaluated to detect the anomaly. The MAEs are sensitive to the anomaly that lies in the PZT substrate. Further, the challenge arising from offset and distortion is addressed with ad hoc image registration technique. Finally, the localisation and quantification of the anomaly are performed by computing PSNR values. This work proposes an advanced, efficient damage detection algorithm in the scenario of big data that is ubiquitous in SHM.

Copyright: © 2023 Nur M M Kalimullah, Amit Shelke, Anowarul Habib
License:

Cette oeuvre a été publiée sous la license Creative Commons Attribution 4.0 (CC-BY 4.0). Il est autorisé de partager et adapter l'oeuvre tant que l'auteur est crédité et la license est indiquée (avec le lien ci-dessus). Vous devez aussi indiquer si des changements on été fait vis-à-vis de l'original.

  • Informations
    sur cette fiche
  • Reference-ID
    10734200
  • Publié(e) le:
    03.09.2023
  • Modifié(e) le:
    07.02.2024
 
Structurae coopère avec
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine