0
  • DE
  • EN
  • FR
  • Base de données et galerie internationale d'ouvrages d'art et du génie civil

Publicité

Data-Driven Predictive Modeling of Steel Slag Concrete Strength for Sustainable Construction

Auteur(s): ORCID
ORCID

Médium: article de revue
Langue(s): anglais
Publié dans: Buildings, , n. 8, v. 14
Page(s): 2476
DOI: 10.3390/buildings14082476
Abstrait:

Conventional concrete causes significant environmental problems, including resource depletion, high CO2 emissions, and high energy consumption. Steel slag aggregate (SSA), a by-product of the steelmaking industry, offers a sustainable alternative due to its environmental benefits and improved mechanical properties. This study examined the predictive power of four modeling techniques—Gene Expression Programming (GEP), an Artificial Neural Network (ANN), Random Forest Regression (RFR), and Gradient Boosting (GB)—to predict the compressive strength (CS) of SSA concrete. Using 367 datasets from the literature, six input variables (cement, water, granulated furnace slag, superplasticizer, coarse aggregate, fine aggregate, and age) were utilized to predict compressive strength. The models’ performance was evaluated using statistical measures such as the mean absolute error (MAE), root mean squared error (RMSE), mean values, and coefficient of determination (R2). Results indicated that the GB model consistently outperformed RFR, GEP, and the ANN, achieving the highest R2 values of 0.99 and 0.96 for the training and testing dataset, respectively, followed by RFR with R2 values of 0.97 (training) and 0.93 (testing), GEP with R2 values of 0.85 (training) and 0.87 (testing), and ANN with R2 values of 0.61 (training) and 0.82 (testing). Additionally, the GB model had the lowest MAE values of 0.79 MPa (training) and 2.61 MPa (testing) and RMSE values of 1.90 MPa (training) and 3.95 MPa (testing). This research aims to advance predictive modeling in sustainable construction through analysis and well-defined conclusions.

Copyright: © 2024 by the authors; licensee MDPI, Basel, Switzerland.
License:

Cette oeuvre a été publiée sous la license Creative Commons Attribution 4.0 (CC-BY 4.0). Il est autorisé de partager et adapter l'oeuvre tant que l'auteur est crédité et la license est indiquée (avec le lien ci-dessus). Vous devez aussi indiquer si des changements on été fait vis-à-vis de l'original.

  • Informations
    sur cette fiche
  • Reference-ID
    10795038
  • Publié(e) le:
    01.09.2024
  • Modifié(e) le:
    01.09.2024
 
Structurae coopère avec
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine