Data-Driven Prediction of Stability of Rock Tunnel Heading: An Application of Machine Learning Models
Auteur(s): |
Chayut Ngamkhanong
Suraparb Keawsawasvong Thira Jearsiripongkul Lowell Tan Cabangon Meghdad Payan Kongtawan Sangjinda Rungkhun Banyong Chanachai Thongchom |
---|---|
Médium: | article de revue |
Langue(s): | anglais |
Publié dans: | Infrastructures, novembre 2022, n. 11, v. 7 |
Page(s): | 148 |
DOI: | 10.3390/infrastructures7110148 |
Abstrait: |
In this paper, Artificial Neural Networks (ANN) have been utilized to predict the stability of a planar tunnel heading in rock mass based on the well-defined Hoek-Brown (HB) yield criterion. The HB model was developed to capture the failure criterion of rock masses. To provide the datasets for an ANN model, the numerical upper bound (UB) and lower bound (LB) solutions obtained from the finite element limit analysis (FELA) with the HB failure criterion for the problem of tunnel headings are derived. The sensitivity analysis of all influencing parameters on the stability of rock tunnel heading is then performed on the developed ANN model. The proposed solutions will enhance the dependability and preciseness of predicting the stability of rock tunnel heading. Note that the effect of the unlined length ratio has not been explored previously but has been found to be of critical importance and significantly contributes to the failure of rock tunnel heading. By utilizing the machine learning-aided prediction capability of the ANN approach, the numerical solutions of the stability of tunnel heading can be accurately predicted, which is better than the use of the classic linear regression approach. Thus, providing a better and much safer assessment of mining or relatively long-wall tunnels in rock masses. |
Copyright: | © 2022 the Authors. Licensee MDPI, Basel, Switzerland. |
License: | Cette oeuvre a été publiée sous la license Creative Commons Attribution 4.0 (CC-BY 4.0). Il est autorisé de partager et adapter l'oeuvre tant que l'auteur est crédité et la license est indiquée (avec le lien ci-dessus). Vous devez aussi indiquer si des changements on été fait vis-à-vis de l'original. |
7.97 MB
- Informations
sur cette fiche - Reference-ID
10722796 - Publié(e) le:
22.04.2023 - Modifié(e) le:
10.05.2023