0
  • DE
  • EN
  • FR
  • Base de données et galerie internationale d'ouvrages d'art et du génie civil

Publicité

Data-Driven Fatigue Failure Probability Updating of OSD by Bayesian Backward Propagation

Auteur(s): ORCID
ORCID
ORCID

Médium: article de revue
Langue(s): anglais
Publié dans: Structural Control and Health Monitoring, , v. 2024
Page(s): 1-12
DOI: 10.1155/2024/2353457
Abstrait:

This study introduces a data-driven approach for updating the fatigue failure probability of the orthotropic steel deck (OSD) using Bayesian backward propagation. The OSD in steel bridges is considered as a parallel system composed of two critical fatigue-prone components, namely, the rib-to-diaphragm and rib-to-deck joints. A probabilistic model for fatigue reliability is established based on the equivalent structural stress method and limit state function. The system-level fatigue reliability model is then constructed, taking into account the correlations between limit states of individual components through Bayesian network forward propagation. The key advantage of the Bayesian network-based framework is its ability to perform backward propagation, allowing for the updating of failure probabilities for critical components when the system-level failure of the OSD is observed. Consequently, the proposed approach enables the identification of vulnerable components through data-driven fatigue failure probability updating. Finally, the approach is applied to a real instrumented steel bridge to determine the time-dependent fatigue failure probability at both the system and component levels over its service life. The results show that the component-level fatigue failure probability model will underestimate the fatigue life in comparison to the system-level model. Meanwhile, the proposed method could identify vulnerable components by quantifying the fatigue failure probability of in-service steel bridges.

Structurae ne peut pas vous offrir cette publication en texte intégral pour l'instant. Le texte intégral est accessible chez l'éditeur. DOI: 10.1155/2024/2353457.
  • Informations
    sur cette fiche
  • Reference-ID
    10769976
  • Publié(e) le:
    29.04.2024
  • Modifié(e) le:
    29.04.2024
 
Structurae coopère avec
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine