0
  • DE
  • EN
  • FR
  • Base de données et galerie internationale d'ouvrages d'art et du génie civil

Publicité

Damage mode identification of composite wind turbine blade under accelerated fatigue loads using acoustic emission and machine learning

Auteur(s):









Médium: article de revue
Langue(s): anglais
Publié dans: Structural Health Monitoring, , n. 4, v. 19
Page(s): 1092-1103
DOI: 10.1177/1475921719878259
Abstrait:

This article studies experimentally the damage behaviors of a 59.5-m-long composite wind turbine blade under accelerated fatigue loads using acoustic emission technique. First, the spectral analysis using the fast Fourier transform is used to study the components of acoustic emission signals. Then, three important objectives including the attenuation behaviors of acoustic emission waves, the arrangement of sensors as well as the detection and positioning of defect sources in the composite blade by developing the time-difference method among different acoustic emission sensors are successfully reached. Furthermore, the clustering analysis using the bisecting K-means method is performed to identify different damage modes for acoustic emission signal sources. This work provides a theoretical and technique support for safety precaution and maintaining of in-service blades.

Structurae ne peut pas vous offrir cette publication en texte intégral pour l'instant. Le texte intégral est accessible chez l'éditeur. DOI: 10.1177/1475921719878259.
  • Informations
    sur cette fiche
  • Reference-ID
    10562343
  • Publié(e) le:
    11.02.2021
  • Modifié(e) le:
    19.02.2021
 
Structurae coopère avec
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine