0
  • DE
  • EN
  • FR
  • Base de données et galerie internationale d'ouvrages d'art et du génie civil

Publicité

Damage Identification of a Concrete Arch Beam Based on Frequency Response Functions and Artificial Neural Networks

Auteur(s):






Médium: article de revue
Langue(s): anglais
Publié dans: Electronic Journal of Structural Engineering, , n. 1, v. 14
Page(s): 75-84
DOI: 10.56748/ejse.141921
Abstrait:

This paper presents a vibration-based structural health monitoring (SHM) technique for the identification of damage in a concrete arch beam replica section of the Sydney Harbour Bridge. The proposed technique uses residual frequency response functions (FRFs) combined with principal component analysis (PCA) to form a damage specific feature (DSF) that is used as an input parameter to artificial neural networks (ANNs). Extensive laboratory testing and numerical modelling are undertaken to validate the method. In the proposed technique, FRFs are obtained by the standard modal testing and damage is identified using ANNs that innovatively map the DSF to the severity of damage (length of damage cut). The results of the experimental and numerical validation show that the proposed technique can successfully quantify damage induced to a concrete arch beam simulating a real life structural component of the Sydney Harbour Bridge.

Structurae ne peut pas vous offrir cette publication en texte intégral pour l'instant. Le texte intégral est accessible chez l'éditeur. DOI: 10.56748/ejse.141921.
  • Informations
    sur cette fiche
  • Reference-ID
    10778782
  • Publié(e) le:
    12.05.2024
  • Modifié(e) le:
    12.05.2024
 
Structurae coopère avec
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine