0
  • DE
  • EN
  • FR
  • Base de données et galerie internationale d'ouvrages d'art et du génie civil

Publicité

Damage Identification Method of Tied-Arch Bridges Based on the Equivalent Thrust-Influenced Line

Auteur(s): ORCID
ORCID
ORCID


Médium: article de revue
Langue(s): anglais
Publié dans: Structural Control and Health Monitoring, , v. 2024
Page(s): 1-20
DOI: 10.1155/2024/6896975
Abstrait:

Early tied-arch bridges cannot satisfy the current traffic load demand due to their load grades and maintenance levels. Also, these tied-arch bridges have accumulated structural damage with increasingly prominent safety risks. In order to accurately evaluate the characteristics of tied-arch bridges’ structural-influenced lines and identify damage of their arch ribs and suspenders, two analytical solutions are derived and established in this paper for the thrust-influenced lines of parabola and catenary two-hinged arches with a tie beam. A new method and an index for identifying damage of arch ribs and suspenders of tied-arch bridges are proposed. The results of numerical simulation in this paper verified that the proposed analytical solution has good analytical accuracy in practice on those two-hinged nonflat arches. With the use of equivalent thrust-influenced line difference curvature, the effectiveness of damage identification and the verification method were verified on the tie beam, suspender, and arch rib of plane tie arch structure as well as the suspender and arch rib of tied-arch bridges in this research. Furthermore, combining with grey relation analysis, the noise immunity of the proposed index method can be verified. Also, thrust-influenced line recognition based on VMD (variational mode decomposition) is introduced, and a practical process of bridge health assessment based on the quasistatic-influenced line loading of three-axle heavy vehicles is established. Theoretical analysis and numerical verification show that the calculated error of the analytic solution of two-hinged arches with a rise-span ratio greater than 1/8 is less than 9.57%, and the error decreases with the increase of the rise-span ratio. Therefore, it can be applied to the calculation and analysis of tied-arch bridges with a rise-span ratio range between 1/4 and 1/5. With the equivalent thrust-influenced line index proposed in this paper, the damage of suspenders and arch ribs of tied-arch bridges can be accurately located. It has been found that the proposed method is more effective to identify the damage of suspenders than the damage of arch ribs does, showing good noise immunity. In summary, this research has provided theoretical support for arch bridge design and evaluation. Combining with existing bridge-monitoring methods, the new bridge damage identification method proposed in this paper has the prospect of realizing the normal health status assessment of existing tied-arch bridges.

Structurae ne peut pas vous offrir cette publication en texte intégral pour l'instant. Le texte intégral est accessible chez l'éditeur. DOI: 10.1155/2024/6896975.
  • Informations
    sur cette fiche
  • Reference-ID
    10758460
  • Publié(e) le:
    15.03.2024
  • Modifié(e) le:
    15.03.2024
 
Structurae coopère avec
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine