0
  • DE
  • EN
  • FR
  • Base de données et galerie internationale d'ouvrages d'art et du génie civil

Publicité

Dam safety prediction model considering chaotic characteristics in prototype monitoring data series

Auteur(s):



Médium: article de revue
Langue(s): anglais
Publié dans: Structural Health Monitoring, , n. 6, v. 15
Page(s): 639-649
DOI: 10.1177/1475921716654963
Abstrait:

Support vector machine, chaos theory, and particle swarm optimization are combined to build the prediction model of dam safety. The approaches are proposed to optimize the input and parameter of prediction model. First, the phase space reconstruction of prototype monitoring data series on dam behavior is implemented. The method identifying chaotic characteristics in monitoring data series is presented. Second, support vector machine is adopted to build the prediction model of dam safety. The characteristic vector of historical monitoring data, which is taken as support vector machine input, is extracted by phase space reconstruction. The chaotic particle swarm optimization algorithm is introduced to determine support vector machine parameters. A chaotic support vector machine–based prediction model of dam safety is built. Finally, the displacement behavior of one actual dam is taken as an example. The prediction capability on the built prediction model of dam displacement is evaluated. It is indicated that the proposed chaotic support vector machine–based model can provide more accurate forecasted results and is more suitable to be used to identify efficiently the dam behavior.

Structurae ne peut pas vous offrir cette publication en texte intégral pour l'instant. Le texte intégral est accessible chez l'éditeur. DOI: 10.1177/1475921716654963.
  • Informations
    sur cette fiche
  • Reference-ID
    10561977
  • Publié(e) le:
    11.02.2021
  • Modifié(e) le:
    19.02.2021
 
Structurae coopère avec
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine