^ Cost Index Predictions for Construction Engineering Based on LSTM Neural Networks | Structurae
  • DE
  • EN
  • FR
  • Base de données et galerie internationale d'ouvrages d'art et du génie civil


Cost Index Predictions for Construction Engineering Based on LSTM Neural Networks


Médium: article de revue
Langue(s): anglais
Publié dans: Advances in Civil Engineering, , v. 2020
Page(s): 1-14
DOI: 10.1155/2020/6518147

In recent years, the cost index predictions of construction engineering projects are becoming important research topics in the field of construction management. Previous methods have limitations in reasonably reflecting the timeliness of engineering cost indexes. The recurrent neural network (RNN) belongs to a time series network, and the purpose of timeliness transfer calculation is achieved through the weight sharing of time steps. The long-term and short_term memory neural network (LSTM NN) solves the RNN limitations of the gradient vanishing and the inability to address long-term dependence under the premise of having the above advantages. The present study proposed a new framework based on LSTM, so as to explore the applicability and optimization mechanism of the algorithm in the field of cost indexes prediction. A survey was conducted in Shenzhen, China, where a total of 143 data samples were collected based on the index set for the corresponding time interval from May 2007 to March 2019. A prediction framework based on the LSTM model, which was trained by using these collected data, was established for the purpose of cost index predictions and test. The testing results showed that the proposed LSTM framework had obvious advantages in prediction because of the ability of processing high-dimensional feature vectors and the capability of selectively recording historical information. Compared with other advanced cost prediction methods, such as Support Vector Machine (SVM), this framework has advantages such as being able to capture long-distance dependent information and can provide short_term predictions of engineering cost indexes both effectively and accurately. This research extended current algorithm tools that can be used to forecast cost indexes and evaluated the optimization mechanism of the algorithm in order to improve the efficiency and accuracy of prediction, which have not been explored in current research knowledge.

Copyright: © Jiacheng Dong et al.

Cette oeuvre a été publiée sous la license Creative Commons Attribution 4.0 (CC-BY 4.0). Il est autorisé de partager et adapter l'oeuvre tant que l'auteur est crédité et la license est indiquée (avec le lien ci-dessus). Vous devez aussi indiquer si des changements on été fait vis-à-vis de l'original.

  • Informations
    sur cette fiche
  • Reference-ID
  • Publié(e) le:
  • Modifié(e) le: