0
  • DE
  • EN
  • FR
  • Base de données et galerie internationale d'ouvrages d'art et du génie civil

Publicité

A Correlation Analysis-Based Structural Load Estimation Method for RC Beams Using Machine Vision and Numerical Simulation

Auteur(s): ORCID






Médium: article de revue
Langue(s): anglais
Publié dans: Buildings, , n. 2, v. 15
Page(s): 207
DOI: 10.3390/buildings15020207
Abstrait:

The correlation analysis between current surface cracks of structures and external loads can provide important insights into determining the structural residual bearing capacity. The classical regression assessment method based on experimental data not only relies on costly structure experiments; it also lacks interpretability. Therefore, a novel load estimation method for RC beams, based on correlation analysis between detected crack images and strain contour plots calculated by FEM, is proposed. The distinct discrepancies between crack images and strain contour figures, coupled with the stochastic nature of actual crack distributions, pose considerable challenges for load estimation tasks. Therefore, a new correlation index model is initially introduced to quantify the correlation between the two types of images in the proposed method. Subsequently, a deep neural network (DNN) is trained as a FEM surrogate model to quickly predict the structural strain response by considering material uncertainties. Ultimately, the range of the optimal load level and its confidence interval are determined via statistical analysis of the load estimations under different random fields. The validation results of RC beams under four-point bending loads show that the proposed algorithm can quickly estimate load levels based on numerical simulation results, and the mean absolute percentage error (MAPE) for load estimation based solely on a single measured structural crack image is 20.68%.

Copyright: © 2025 by the authors; licensee MDPI, Basel, Switzerland.
License:

Cette oeuvre a été publiée sous la license Creative Commons Attribution 4.0 (CC-BY 4.0). Il est autorisé de partager et adapter l'oeuvre tant que l'auteur est crédité et la license est indiquée (avec le lien ci-dessus). Vous devez aussi indiquer si des changements on été fait vis-à-vis de l'original.

  • Informations
    sur cette fiche
  • Reference-ID
    10815962
  • Publié(e) le:
    03.02.2025
  • Modifié(e) le:
    03.02.2025
 
Structurae coopère avec
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine