Controlling Seepage Flow Beneath Hydraulic Structures: Effects of Floor Openings and Sheet Pile Wall Cracks
Auteur(s): |
Mohamed Farouk
|
---|---|
Médium: | article de revue |
Langue(s): | anglais |
Publié dans: | Buildings, 2 juillet 2024, n. 7, v. 14 |
Page(s): | 2234 |
DOI: | 10.3390/buildings14072234 |
Abstrait: |
Using one opening (filter) within the floors of hydraulic structures is a known technique to relieve the seepage effects on their floors. In this study, a new method to control seepage flow by using two identical filters instead of one was tackled numerically. A comparative analysis of using one versus two filters was conducted for different thicknesses of the permeable stratum, apron size (b), filter length, and sheet pile wall depths. Results indicate that two filters are considerably more effective than using one where the overall uplift force, the maximum potential head, and the hydraulic exit gradient downstream of the floor are reduced to 42–56%, 42–51%, and 66–76%, respectively, compared to one filter, while slightly increasing seepage flow by 1–7%. Many reasons can lead to horizontal openings (cracks) appearing along the sheet pile walls beneath hydraulic structures. The current study tackled their effects on seepage flow for the first time and examined their impact on the floor. A crack in the upstream sheet pile wall can increase total uplift forces by up to 40%, while a crack in the downstream sheet pile wall can increase the hydraulic exit gradient by up to 230% |
Copyright: | © 2024 by the authors; licensee MDPI, Basel, Switzerland. |
License: | Cette oeuvre a été publiée sous la license Creative Commons Attribution 4.0 (CC-BY 4.0). Il est autorisé de partager et adapter l'oeuvre tant que l'auteur est crédité et la license est indiquée (avec le lien ci-dessus). Vous devez aussi indiquer si des changements on été fait vis-à-vis de l'original. |
6 MB
- Informations
sur cette fiche - Reference-ID
10795129 - Publié(e) le:
01.09.2024 - Modifié(e) le:
01.09.2024