0
  • DE
  • EN
  • FR
  • Base de données et galerie internationale d'ouvrages d'art et du génie civil

Publicité

Contribution to the rheological study of cementitious pastes with addition of residues from the processing of ornamental rocks

Auteur(s):


Médium: article de revue
Langue(s): anglais
Publié dans: Revista IBRACON de Estruturas e Materiais, , n. 6, v. 11
Page(s): 1284-1307
DOI: 10.1590/s1983-41952018000600007
Abstrait:

Brazil is one of the world's largest producers and exporters in the field of ornamental stones. On the other hand, the production and processing of ornamental stones result in a large volume of unused material in the form of sludge, usually discarded inappropriately in sedimentation ponds or landfills. Several researches have been carried out aiming the reuse of this material in cementitious matrixes. In the field of rheology, there are still incipient national studies that use the rheological parameters obtained experimentally to determine the behavior of cement matrix based on Portland cement. Thus, the objective of this work is to characterize rheologically the behavior of cementitious pastes with and without addition of ornamental rock processing residue (RBRO) in its natural condition. Cement pastes were prepared with three a/c ratios (0.45, 0.55, 0.65) and four residue addition contents (0%, 5%, 10%, 15%) and submitted to the flow test. In tests for characterization of the residue, the RBRO presented as a material of specific fineness and mass near the cement, having low reactive activity, indicating that the residue can be used as an inert mineral addition in the cementitious matrix. In the rheological characterization tests of the pulps studied, it was observed in the flow tests that the samples behaved as a non-Newtonian, pseudoplastic and thixotropic fluid.

Structurae ne peut pas vous offrir cette publication en texte intégral pour l'instant. Le texte intégral est accessible chez l'éditeur. DOI: 10.1590/s1983-41952018000600007.
  • Informations
    sur cette fiche
  • Reference-ID
    10413237
  • Publié(e) le:
    12.02.2020
  • Modifié(e) le:
    12.02.2020
 
Structurae coopère avec
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine