Construction Theory for a Building Intelligent Operation and Maintenance System Based on Digital Twins and Machine Learning
Auteur(s): |
Yuhong Zhao
Naiqiang Wang Zhansheng Liu Enyi Mu |
---|---|
Médium: | article de revue |
Langue(s): | anglais |
Publié dans: | Buildings, 18 janvier 2022, n. 2, v. 12 |
Page(s): | 87 |
DOI: | 10.3390/buildings12020087 |
Abstrait: |
The operation and maintenance (O&M) of buildings plays an important role in ensuring that the buildings work normally, as well as reducing the damage caused by functional errors. There are obvious problems in the traditional O&M modality, and an effective way to solve them is to make the model smarter. In this paper, a digital twin framework for building operation is proposed, which consists of two key components: a digital twin O&M model and a machine learning algorithm. The process of establishing the digital twin model is introduced in detail, and the method is explained according to the structure, equipment, and energy consumption characteristics of the model. A mechanism of fusing the digital twin and machine learning algorithm is proposed and the prediction process based on an artificial neural network (ANN) is shown. Finally, based on a systematic summary of the modeling process and fusion mechanism, the development path and overall structure of the intelligent O&M system utilizing digital twins is proposed. |
Copyright: | © 2022 by the authors; licensee MDPI, Basel, Switzerland. |
License: | Cette oeuvre a été publiée sous la license Creative Commons Attribution 4.0 (CC-BY 4.0). Il est autorisé de partager et adapter l'oeuvre tant que l'auteur est crédité et la license est indiquée (avec le lien ci-dessus). Vous devez aussi indiquer si des changements on été fait vis-à-vis de l'original. |
1.91 MB
- Informations
sur cette fiche - Reference-ID
10657734 - Publié(e) le:
17.02.2022 - Modifié(e) le:
01.06.2022