0
  • DE
  • EN
  • FR
  • Base de données et galerie internationale d'ouvrages d'art et du génie civil

Publicité

Construction of Building Energy Consumption Prediction Model Based on Multi-Optimization Model

Auteur(s): ORCID



Médium: article de revue
Langue(s): anglais
Publié dans: Buildings, , n. 7, v. 13
Page(s): 1677
DOI: 10.3390/buildings13071677
Abstrait:

This study explores the utilization of the Relevance Vector Machine (RVM) model, optimized using the Sparrow Search Algorithm (SSA), Simulate Anneal Arithmetic (SAA), Particle Swarm Optimization (PSO), and Bayesian Optimization Algorithm (BOP), to construct an energy dissipation model for public buildings in Wuhan City. Energy consumption data and influential factors were collected from 100 public buildings, yielding 15 input variables, including building area, personnel density, and supply air temperature. Energy dissipation served as the output scalar indicator. Through correlation analysis between input and output variables, it was found that building area, personnel density, and supply air temperature significantly impact energy dissipation in public buildings. Principal component analysis (PCA) was employed for data dimensionality reduction, selecting seven main influential factors along with energy dissipation values as the dataset for the predictive model. The BOP-RVM model showed superior performance in terms of R2 (0.9523), r (0.9761), and low RMSE (5.3894) and SI (0.056). These findings hold substantial practical value for accurately predicting building energy consumption and formulating effective energy management strategies.

Copyright: © 2023 by the authors; licensee MDPI, Basel, Switzerland.
License:

Cette oeuvre a été publiée sous la license Creative Commons Attribution 4.0 (CC-BY 4.0). Il est autorisé de partager et adapter l'oeuvre tant que l'auteur est crédité et la license est indiquée (avec le lien ci-dessus). Vous devez aussi indiquer si des changements on été fait vis-à-vis de l'original.

  • Informations
    sur cette fiche
  • Reference-ID
    10737273
  • Publié(e) le:
    03.09.2023
  • Modifié(e) le:
    14.09.2023
 
Structurae coopère avec
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine