Constrained Mode–Damping Solvent Extraction Combined Method for the Soil Incorporation into a Real-Time Hybrid Test of the Soil–Structure System
Auteur(s): |
Lanfang Luo
Nan Jiang |
---|---|
Médium: | article de revue |
Langue(s): | anglais |
Publié dans: | Buildings, 16 septembre 2022, n. 9, v. 12 |
Page(s): | 1468 |
DOI: | 10.3390/buildings12091468 |
Abstrait: |
The real-time hybrid test is an effective testing method for soil–structure interaction research. Due to the data interaction time requirement and formula derivation method, the traditional real-time hybrid test of soil–structure interaction mostly employs a simple numerical substructure model. This study investigated the model construction and numerical simulation of a finite element soil substructure with high simulation accuracy and calculation efficiency. The soil was subdivided into near-field and far-field zones. A constrained mode–damping solvent extraction combined method was applied to the latter zone, reducing the soil’s computational scale and simulating the far-field energy dissipation effect. Then, the basic formula of the near-field zone–structure system was derived using the branch mode method, and the motion equation of the soil–structure system applied to real-time hybrid test was obtained. The soil’s numerical model was realized by the joint application of ANSYS and MATLAB software packages and verified through the real-time hybrid test of the soil–structure system. The results show that the proposed constrained mode–damping solvent extraction combined method had high calculation efficiency and good accuracy. It satisfied the requirements of the soil numerical substructure in real-time hybrid tests. |
Copyright: | © 2022 by the authors; licensee MDPI, Basel, Switzerland. |
License: | Cette oeuvre a été publiée sous la license Creative Commons Attribution 4.0 (CC-BY 4.0). Il est autorisé de partager et adapter l'oeuvre tant que l'auteur est crédité et la license est indiquée (avec le lien ci-dessus). Vous devez aussi indiquer si des changements on été fait vis-à-vis de l'original. |
3.74 MB
- Informations
sur cette fiche - Reference-ID
10692745 - Publié(e) le:
23.09.2022 - Modifié(e) le:
10.11.2022