Conjugate Cellular Automata and Neural Network Approach: Failure Load Prediction of Masonry Panels
Auteur(s): |
Iuliia Glushakova
Qihan Liu Yu Zhang Guangchun Zhou |
---|---|
Médium: | article de revue |
Langue(s): | anglais |
Publié dans: | Advances in Civil Engineering, janvier 2020, v. 2020 |
Page(s): | 1-12 |
DOI: | 10.1155/2020/9032857 |
Abstrait: |
The intricate interplay between the microscopic constituents and their macroscopic properties for masonry structures complicates their failure analysis modelling. A composite strategy incorporating neural network (NN) and cellular automata (CA) is developed to predict the failure load for masonry panels with and without openings subjected to lateral loadings. The discretized panels are modelled by the CA methodology using nine neighbour cells, which derive their state values from geometric parameters and opening location placement for the panels. An identification coefficient dictated by these geometric parameters and experimental data is fed together as the input training data for the NN. The NN uses a backpropagation algorithm and two hidden layers with sigmoid activation functions to predict failure loads. This method achieves greater accuracy in prediction when compared with the yield line and finite elemental analysis (FEA) methods. The results attained elucidate the feasibility of the current methodology to complement conventional approaches such as FEA to provide additional insight into the failure mechanism of masonry panels under varied loading conditions. |
Copyright: | © 2020 Iuliia Glushakova et al. |
License: | Cette oeuvre a été publiée sous la license Creative Commons Attribution 4.0 (CC-BY 4.0). Il est autorisé de partager et adapter l'oeuvre tant que l'auteur est crédité et la license est indiquée (avec le lien ci-dessus). Vous devez aussi indiquer si des changements on été fait vis-à-vis de l'original. |
1.31 MB
- Informations
sur cette fiche - Reference-ID
10427947 - Publié(e) le:
30.07.2020 - Modifié(e) le:
02.06.2021