Confidentiality Preserved Federated Learning for Indoor Localization Using Wi-Fi Fingerprinting
Auteur(s): |
Rajeev Kumar
Renu Popli Vikas Khullar Isha Kansal Ashutosh Sharma |
---|---|
Médium: | article de revue |
Langue(s): | anglais |
Publié dans: | Buildings, 2 août 2023, n. 8, v. 13 |
Page(s): | 2048 |
DOI: | 10.3390/buildings13082048 |
Abstrait: |
For the establishment of future ubiquitous location-aware applications, a scalable indoor localization technique is essential technology. Numerous classification techniques for indoor localization exist, but none have proven to be as quick, secure, and dependable as what is now needed. This research proposes an effective and privacy-protective federated architecture-based framework for location classification via Wi-Fi fingerprinting. The federated indoor localization classification (f-ILC) system that was suggested had distributed client–server architecture with data privacy for any and all related edge devices or clients. To try and evaluate the proposed f-ILC framework, different data from different sources on the Internet were collected and given in a format that had already been processed. Experiments were conducted with standard learning, federated learning with a single client, and federated learning with several clients to make sure that federated deep learning models worked correctly. The success of the f-ILC framework was computed using a number of factors, such as validation of accuracy and loss. The results showed that the suggested f-ILC framework performed better than traditional distributed deep learning-based classifiers in terms of accuracy and loss while keeping data secure. Due to its innovative design and superior performance over existing classifier tools, edge devices’ data privacy makes this proposed architecture the ideal solution. |
Copyright: | © 2023 by the authors; licensee MDPI, Basel, Switzerland. |
License: | Cette oeuvre a été publiée sous la license Creative Commons Attribution 4.0 (CC-BY 4.0). Il est autorisé de partager et adapter l'oeuvre tant que l'auteur est crédité et la license est indiquée (avec le lien ci-dessus). Vous devez aussi indiquer si des changements on été fait vis-à-vis de l'original. |
8.2 MB
- Informations
sur cette fiche - Reference-ID
10737461 - Publié(e) le:
02.09.2023 - Modifié(e) le:
14.09.2023