0
  • DE
  • EN
  • FR
  • Base de données et galerie internationale d'ouvrages d'art et du génie civil

Publicité

Computer Vision-Based Structural Displacement Monitoring and Modal Identification with Subpixel Localization Refinement

Auteur(s): ORCID
ORCID
ORCID
Médium: article de revue
Langue(s): anglais
Publié dans: Advances in Civil Engineering, , v. 2022
Page(s): 1-11
DOI: 10.1155/2022/5444101
Abstrait:

In conventional structural health monitoring (SHM), the installation of sensors and data acquisition devices will affect the regular operation of structures to a certain extent and is also expensive. In order to overcome these shortcomings, the computer vision- (CV-) based method has been introduced into SHM, and its practical applications are increasing. In this paper, CV-based SHM methods such as template matching and Hough circle transform are described. In order to improve the accuracy of pixel localization, the subpixel localization refinement method is introduced. The displacement monitoring experiment of an aluminum alloy cantilever with three targets is conducted by using the two CV-based SHM methods and the laser displacement sensors simultaneously. The displacement monitoring results of CV-based methods agree well with those measured by the laser transducer system in the time domain. After that, the first two modes of the cantilever are identified from the monitoring results. In addition, the experimental modes identified from the monitoring data and those calculated from the finite element model are also consistent. Therefore, the developed CV-based methods can obtain accurate displacement results in both time and frequency domains, which could be applied to complex structures with more monitoring targets.

Copyright: © 2022 Tao Liu et al. et al.
License:

Cette oeuvre a été publiée sous la license Creative Commons Attribution 4.0 (CC-BY 4.0). Il est autorisé de partager et adapter l'oeuvre tant que l'auteur est crédité et la license est indiquée (avec le lien ci-dessus). Vous devez aussi indiquer si des changements on été fait vis-à-vis de l'original.

  • Informations
    sur cette fiche
  • Reference-ID
    10687222
  • Publié(e) le:
    13.08.2022
  • Modifié(e) le:
    10.11.2022
 
Structurae coopère avec
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine