Computer vision and deep learning–based data anomaly detection method for structural health monitoring
Auteur(s): |
Yuequan Bao
Zhiyi Tang Hui Li Yufeng Zhang |
---|---|
Médium: | article de revue |
Langue(s): | anglais |
Publié dans: | Structural Health Monitoring, janvier 2018, n. 2, v. 18 |
Page(s): | 401-421 |
DOI: | 10.1177/1475921718757405 |
Abstrait: |
The widespread application of sophisticated structural health monitoring systems in civil infrastructures produces a large volume of data. As a result, the analysis and mining of structural health monitoring data have become hot research topics in the field of civil engineering. However, the harsh environment of civil structures causes the data measured by structural health monitoring systems to be contaminated by multiple anomalies, which seriously affect the data analysis results. This is one of the main barriers to automatic real-time warning, because it is difficult to distinguish the anomalies caused by structural damage from those related to incorrect data. Existing methods for data cleansing mainly focus on noise filtering, whereas the detection of incorrect data requires expertise and is very time-consuming. Inspired by the real-world manual inspection process, this article proposes a computer vision and deep learning–based data anomaly detection method. In particular, the framework of the proposed method includes two steps: data conversion by data visualization, and the construction and training of deep neural networks for anomaly classification. This process imitates human biological vision and logical thinking. In the data visualization step, the time series signals are transformed into image vectors that are plotted piecewise in grayscale images. In the second step, a training dataset consisting of randomly selected and manually labeled image vectors is input into a deep neural network or a cluster of deep neural networks, which are trained via techniques termed stacked autoencoders and greedy layer-wise training. The trained deep neural networks can be used to detect potential anomalies in large amounts of unchecked structural health monitoring data. To illustrate the training procedure and validate the performance of the proposed method, acceleration data from the structural health monitoring system of a real long-span bridge in China are employed. The results show that the multi-pattern anomalies of the data can be automatically detected with high accuracy. |
- Informations
sur cette fiche - Reference-ID
10562143 - Publié(e) le:
11.02.2021 - Modifié(e) le:
19.02.2021