0
  • DE
  • EN
  • FR
  • Base de données et galerie internationale d'ouvrages d'art et du génie civil

Publicité

Compressive Strength Prediction of High-Strength Concrete Using Long Short-Term Memory and Machine Learning Algorithms

Auteur(s):

ORCID



Médium: article de revue
Langue(s): anglais
Publié dans: Buildings, , n. 3, v. 12
Page(s): 302
DOI: 10.3390/buildings12030302
Abstrait:

Compressive strength is an important mechanical property of high-strength concrete (HSC), but testing methods are usually uneconomical, time-consuming, and labor-intensive. To this end, in this paper, a long short_term memory (LSTM) model was proposed to predict the HSC compressive strength using 324 data sets with five input independent variables, namely water, cement, fine aggregate, coarse aggregate, and superplasticizer. The prediction results were compared with those of the conventional support vector regression (SVR) model using four metrics, root mean square error (RMSE), mean absolute error (MAE), mean absolute percentage error (MAPE), and correlation coefficient (R2). The results showed that the prediction accuracy and reliability of LSTM were higher with R2 = 0.997, RMSE = 0.508, MAE = 0.08, and MAPE = 0.653 compared to the evaluation metrics R2 = 0.973, RMSE = 1.595, MAE = 0.312, MAPE = 2.469 of the SVR model. The LSTM model is recommended for the pre-estimation of HSC compressive strength under a given mix ratio before the laboratory compression test. Additionally, the Shapley additive explanations (SHAP)-based approach was performed to analyze the relative importance and contribution of the input variables to the output compressive strength.

Copyright: © 2022 by the authors; licensee MDPI, Basel, Switzerland.
License:

Cette oeuvre a été publiée sous la license Creative Commons Attribution 4.0 (CC-BY 4.0). Il est autorisé de partager et adapter l'oeuvre tant que l'auteur est crédité et la license est indiquée (avec le lien ci-dessus). Vous devez aussi indiquer si des changements on été fait vis-à-vis de l'original.

  • Informations
    sur cette fiche
  • Reference-ID
    10661226
  • Publié(e) le:
    23.03.2022
  • Modifié(e) le:
    01.06.2022
 
Structurae coopère avec
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine