0
  • DE
  • EN
  • FR
  • Base de données et galerie internationale d'ouvrages d'art et du génie civil

Publicité

Compressive Behaviour of Circular High-Strength Self-Compacting Concrete-Filled Steel Tubular (CFST) Stub Columns Under Chloride Corrosion: Numerical Simulation

Auteur(s):





Médium: article de revue
Langue(s): anglais
Publié dans: Buildings, , n. 12, v. 14
Page(s): 3775
DOI: 10.3390/buildings14123775
Abstrait:

This paper investigates the strength and behaviour of high-strength self-compacting concrete-filled steel tubular (HSSC-CFST) stub columns under axial compression. HSSC-CFST columns are high-performance structural members with wide applications in engineering structures. Nevertheless, relevant studies have commonly focused on the mechanical performance of HSSC-CFST in indoor environments. A finite element (FE) model was developed to predict the axial load capacity of HSSC-CFST stub columns subjected to chloride corrosion. According to this, several crucial geometric and material parameters were designed to investigate the influences on strength, initial stiffness, and ductile performance. Moreover, the analysis on failure mechanisms was investigated by N-ε curves and stress development in the whole loading process. The impacts of key parameters on the reduction factor of axial load capacity were also identified. The numerical analysis results indicate that the axial strength of HSSC-CFST stub columns under chloride corrosion was significantly heightened by increasing the strength of core self-compacting concrete, while contrary results were found with the increase in the steel ratio and yield strength of the steel tube. Lastly, design recommendations for the axially loaded HSSC-CFST were presented by modifying the design codes in CECS104-99. The proposed model is shown to be able to estimate the axial load-bearing capacity of HSSC-CFST stub columns more accurately.

Copyright: © 2024 by the authors; licensee MDPI, Basel, Switzerland.
License:

Cette oeuvre a été publiée sous la license Creative Commons Attribution 4.0 (CC-BY 4.0). Il est autorisé de partager et adapter l'oeuvre tant que l'auteur est crédité et la license est indiquée (avec le lien ci-dessus). Vous devez aussi indiquer si des changements on été fait vis-à-vis de l'original.

  • Informations
    sur cette fiche
  • Reference-ID
    10810126
  • Publié(e) le:
    17.01.2025
  • Modifié(e) le:
    17.01.2025
 
Structurae coopère avec
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine