0
  • DE
  • EN
  • FR
  • Base de données et galerie internationale d'ouvrages d'art et du génie civil

Publicité

Comparison of Three Intelligent Techniques for Runoff Simulation

Auteur(s):

Médium: article de revue
Langue(s): anglais
Publié dans: Civil Engineering Journal, , n. 5, v. 4
Page(s): 1095
DOI: 10.28991/cej-0309159
Abstrait:

In this study, performance of a feedback neural network, Elman, is evaluated for runoff simulation. The model ability is compared with two other intelligent models namely, standalone feedforward Multi-layer Perceptron (MLP) neural network model and hybrid Adaptive Neuro-Fuzzy Inference System (ANFIS) model. In this case, daily runoff data during monsoon period in a catchment located at south India were collected. Three statistical criteria, correlation coefficient, coefficient of efficiency and the difference of slope of a best-fit line from observed-estimated scatter plots to 1:1 line, were applied for comparing the performances of the models. The results showed that ANFIS technique provided significant improvement as compared to Elman and MLP models. ANFIS could be an efficient alternative to artificial neural networks, a computationally intensive method, for runoff predictions providing at least comparable accuracy. Comparing two neural networks indicated that, unexpectedly, Elman technique has high ability than MLP, which is a powerful model in simulation of hydrological processes, in runoff modeling.

Copyright: © 2018 Mahsa H. Kashani, Reza Soltangeys
License:

Cette oeuvre a été publiée sous la license Creative Commons Attribution 4.0 (CC-BY 4.0). Il est autorisé de partager et adapter l'oeuvre tant que l'auteur est crédité et la license est indiquée (avec le lien ci-dessus). Vous devez aussi indiquer si des changements on été fait vis-à-vis de l'original.

  • Informations
    sur cette fiche
  • Reference-ID
    10341007
  • Publié(e) le:
    14.08.2019
  • Modifié(e) le:
    02.06.2021
 
Structurae coopère avec
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine