0
  • DE
  • EN
  • FR
  • Base de données et galerie internationale d'ouvrages d'art et du génie civil

Publicité

Comparison of Machine Learning Techniques for the Prediction of Compressive Strength of Concrete

Auteur(s):



Médium: article de revue
Langue(s): anglais
Publié dans: Advances in Civil Engineering, , v. 2018
Page(s): 1-9
DOI: 10.1155/2018/5481705
Abstrait:

A comparative analysis for the prediction of compressive strength of concrete at the ages of 28, 56, and 91 days has been carried out using machine learning techniques via “R” software environment. R is digging out a strong foothold in the statistical realm and is becoming an indispensable tool for researchers. The dataset has been generated under controlled laboratory conditions. Using R miner, the most widely used data mining techniques decision tree (DT) model, random forest (RF) model, and neural network (NN) model have been used and compared with the help of coefficient of determination (R²) and root-mean-square error (RMSE), and it is inferred that the NN model predicts with high accuracy for compressive strength of concrete.

Copyright: © 2018 Palika Chopra et al.
License:

Cette oeuvre a été publiée sous la license Creative Commons Attribution 4.0 (CC-BY 4.0). Il est autorisé de partager et adapter l'oeuvre tant que l'auteur est crédité et la license est indiquée (avec le lien ci-dessus). Vous devez aussi indiquer si des changements on été fait vis-à-vis de l'original.

  • Informations
    sur cette fiche
  • Reference-ID
    10176758
  • Publié(e) le:
    30.11.2018
  • Modifié(e) le:
    02.06.2021
 
Structurae coopère avec
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine