• DE
  • EN
  • FR
  • Base de données et galerie internationale d'ouvrages d'art et du génie civil

Publicité

Comparison of calcined illitic clays (brick clays) and low-grade kaolinitic clays as supplementary cementitious materials

  1. Scrivener KL, John VM, Gartner EM, UN Environment (2018) Eco-efficient cements: potential economically viable solutions for a low-CO2 cement-based industry. Cem Concr Res 114:2–26

    https://doi.org/10.1016/j.cemconres.2018.03.015

  2. Provis JL (2018) Alkali-activated materials. Cem Concr Res 114:40–48

    https://doi.org/10.1016/j.cemconres.2017.02.009

  3. He C, Osbæck B, Makovicky E (1995) Pozzolanic reactions of six principal clay minerals: activation, reactivity assessments and technological effects. Cem Concr Res 25:1691–1702

    https://doi.org/10.1016/0008-8846(95)00165-4

  4. Fernandez R, Martirena F, Scrivener KL (2011) The origin of the pozzolanic activity of calcined clay minerals: a comparison between kaolinite, illite and montmorillonite. Cem Concr Res 41:113–122

    https://doi.org/10.1016/j.cemconres.2010.09.013

  5. Hollanders S, Adriaens R, Skibsted J, Cizer Ö, Elsen J (2016) Pozzolanic reactivity of pure calcined clays. Appl Clay Sci 132–133:552–560

    https://doi.org/10.1016/j.clay.2016.08.003

  6. He C, Makovicky E, Osbæck B (1995) Thermal stability and pozzolanic activity of calcined illite. Appl Clay Sci 9:337–354

    https://doi.org/10.1016/0169-1317(94)00033-M

  7. He C, Makovicky E, Osbæck B (1996) Thermal treatment and pozzolanic activity of Na- and Ca-montmorillonite. Appl Clay Sci 10:351–368

    https://doi.org/10.1016/0169-1317(95)00037-2

  8. Garg N, Skibsted J (2014) Thermal activation of a pure montmorillonite clay and its reactivity in cementitious systems. J Phys Chem C 118:11464–11477

    https://doi.org/10.1021/jp502529d

  9. Garg N, Skibsted J (2016) Pozzolanic reactivity of a calcined interstratified illite/smectite (70/30) clay. Cem Concr Res 79:101–111

    https://doi.org/10.1016/j.cemconres.2015.08.006

  10. Bauer A, Berger G (1998) Kaolinite and smectite dissolution rate in high molar KOH solutions at 35° and 80°C. Appl Geochem 13:905–916

    https://doi.org/10.1016/S0883-2927(98)00018-3

  11. Taylor-Lange SC, Lamon EL, Riding KA, Juenger MCG (2015) Calcined kaolinite–bentonite clay blends as supplementary cementitious materials. Appl Clay Sci 108:84–93

    https://doi.org/10.1016/j.clay.2015.01.025

  12. Avet F, Snellings R, Alujas Diaz A, Ben Haha M, Scrivener K (2016) Development of a new rapid, relevant and reliable (R3) test method to evaluate the pozzolanic reactivity of calcined kaolinitic clays. Cem Concr Res 85:1–11

    https://doi.org/10.1016/j.cemconres.2016.02.015

  13. Avet F, Scrivener K (2018) Investigation of the calcined kaolinite content on the hydration of Limestone Calcined Clay Cement (LC3). Cem Concr Res 107:124–135

    https://doi.org/10.1016/j.cemconres.2018.02.016

  14. Maraghechi, Hamed / Avet, Francois / Wong, Hong / Kamyab, Hadi / Scrivener, Karen (2018): Performance of Limestone Calcined Clay Cement (LC3) with various kaolinite contents with respect to chloride transport. Dans: Materials and Structures, v. 51, n. 5 (octobre 2018).

    https://doi.org/10.1617/s11527-018-1255-3

  15. Buchwald A, Hohmann M, Posern K, Brendler E (2009) The suitability of thermally activated illite/smectite clay as raw material for geopolymer binders. Appl Clay Sci 46:300–304

    https://doi.org/10.1016/j.clay.2009.08.026

  16. Trümer A, Ludwig H-M, Rohloff K (2014) Investigation into the application of calcined clays as composite material in cement. ZKG Int 67(9):52–57
  17. Alujas A, Fernández R, Quintana R, Scrivener KL, Martirena F (2015) Pozzolanic reactivity of low grade kaolinitic clays: influence of calcination temperature and impact of calcination products on OPC hydration. Appl Clay Sci 108:94–101

    https://doi.org/10.1016/j.clay.2015.01.028

  18. Schulze SE, Rickert J (2019) Suitability of natural calcined clays as supplementary cementitious material. Cem Concr Compos 95:92–97

    https://doi.org/10.1016/j.cemconcomp.2018.07.006

  19. Lorenz W, Gwosdz W (2003) Handbuch zur geologisch-technischen Bewertung von mineralischen Baurohstoffen (Geologisches Jahrbuch, Sonderhefte, Reihe H, Heft SH 16). Schweizerbart, Stuttgart
  20. Bloodworth A, Highley D, Cowley J (2007) Brick clay—mineral planning factsheet. British Geological Survey. https://www.bgs.ac.uk/downloads/start.cfm?id=1350 . Accessed 29 Aug 2016
  21. Krakow L, Schunke F (2015) Resource efficiency in brick and tile industry (Ziegelindustrie International Sonderdruck). Bauverlag, Gütersloh
  22. Krakow L, Schunke F (2016) Current clay potential in Germany. Part 1: general introduction. Ziegelind Int 2:18–25
  23. Meunier A (2005) Clays. Springer, Berlin
  24. Emmerich K (2000) Spontaneous rehydroxylation of a dehydroxylated cis-vacant montmorillonite. Clays Clay Miner 48:405–408

    https://doi.org/10.1346/CCMN.2000.0480312

  25. Bernal, Susan A. / Juenger, Maria C. G. / Ke, Xinyuan / Matthes, Winnie / Lothenbach, Barbara (2017): Characterization of supplementary cementitious materials by thermal analysis. Dans: Materials and Structures, v. 50, n. 1 (février 2017).

    https://doi.org/10.1617/s11527-016-0909-2

  26. Keppler H (1990) Ion exchange reactions between dehydroxylated micas and salt melts and the crystal chemistry of the interlayer cation in micas. Am Mineral 75:529–538
  27. Berodier E, Scrivener K (2014) Understanding the filler effect on the nucleation and growth of C–S–H. J Am Ceram Soc 97:3764–3773

    https://doi.org/10.1111/jace.13177

  28. Oey T, Kumar A, Bullard JW, Neithalath N, Sant G (2013) The filler effect: the influence of filler content and surface area on cementitious reaction rates. J Am Ceram Soc 96:1978–1990

    https://doi.org/10.1111/jace.12264

  29. Kumar A, Oey T, Falzone G, Huang J, Bauchy M, Balonis M, Neithalath N, Bullard J, Sant G (2017) The filler effect: the influence of filler content and type on the hydration rate of tricalcium silicate. J Am Ceram Soc 100:3316–3328

    https://doi.org/10.1111/jace.14859

  30. Odler, I. (1991): Strength of cement (final report). Dans: Materials and Structures, v. 24, n. 2 (mars 1991).

    https://doi.org/10.1007/bf02472476

  31. Lothenbach B, Matschei T, Möschner G, Glasser FP (2008) Thermodynamic modelling of the effect of temperature on the hydration and porosity of Portland cement. Cem Concr Res 38:1–18

    https://doi.org/10.1016/j.cemconres.2007.08.017

  32. Lothenbach B, Kulik DA, Matschei T, Balonis M, Baquerizo L, Dilnesa B, Miron GD, Myers RJ (2019) Cemdata18: a chemical thermodynamic database for hydrated Portland cements and alkali-activated materials. Cem Concr Res 115:472–506

    https://doi.org/10.1016/j.cemconres.2018.04.018

Publicité

  • Informations
    sur cette fiche
  • Reference-ID
    10374649
  • Publié(e) le:
    19.09.2019
  • Modifié(e) le:
    19.09.2019