• DE
  • EN
  • FR
  • Base de données et galerie internationale d'ouvrages d'art et du génie civil


Comparison of calcined illitic clays (brick clays) and low-grade kaolinitic clays as supplementary cementitious materials

  1. Scrivener KL, John VM, Gartner EM, UN Environment (2018) Eco-efficient cements: potential economically viable solutions for a low-CO2 cement-based industry. Cem Concr Res 114:2–26


  2. Provis JL (2018) Alkali-activated materials. Cem Concr Res 114:40–48


  3. He C, Osbæck B, Makovicky E (1995) Pozzolanic reactions of six principal clay minerals: activation, reactivity assessments and technological effects. Cem Concr Res 25:1691–1702


  4. Fernandez R, Martirena F, Scrivener KL (2011) The origin of the pozzolanic activity of calcined clay minerals: a comparison between kaolinite, illite and montmorillonite. Cem Concr Res 41:113–122


  5. Hollanders S, Adriaens R, Skibsted J, Cizer Ö, Elsen J (2016) Pozzolanic reactivity of pure calcined clays. Appl Clay Sci 132–133:552–560


  6. He C, Makovicky E, Osbæck B (1995) Thermal stability and pozzolanic activity of calcined illite. Appl Clay Sci 9:337–354


  7. He C, Makovicky E, Osbæck B (1996) Thermal treatment and pozzolanic activity of Na- and Ca-montmorillonite. Appl Clay Sci 10:351–368


  8. Garg N, Skibsted J (2014) Thermal activation of a pure montmorillonite clay and its reactivity in cementitious systems. J Phys Chem C 118:11464–11477


  9. Garg N, Skibsted J (2016) Pozzolanic reactivity of a calcined interstratified illite/smectite (70/30) clay. Cem Concr Res 79:101–111


  10. Bauer A, Berger G (1998) Kaolinite and smectite dissolution rate in high molar KOH solutions at 35° and 80°C. Appl Geochem 13:905–916


  11. Taylor-Lange SC, Lamon EL, Riding KA, Juenger MCG (2015) Calcined kaolinite–bentonite clay blends as supplementary cementitious materials. Appl Clay Sci 108:84–93


  12. Avet F, Snellings R, Alujas Diaz A, Ben Haha M, Scrivener K (2016) Development of a new rapid, relevant and reliable (R3) test method to evaluate the pozzolanic reactivity of calcined kaolinitic clays. Cem Concr Res 85:1–11


  13. Avet F, Scrivener K (2018) Investigation of the calcined kaolinite content on the hydration of Limestone Calcined Clay Cement (LC3). Cem Concr Res 107:124–135


  14. Maraghechi, Hamed / Avet, Francois / Wong, Hong / Kamyab, Hadi / Scrivener, Karen (2018): Performance of Limestone Calcined Clay Cement (LC3) with various kaolinite contents with respect to chloride transport. Dans: Materials and Structures, v. 51, n. 5 (octobre 2018).


  15. Buchwald A, Hohmann M, Posern K, Brendler E (2009) The suitability of thermally activated illite/smectite clay as raw material for geopolymer binders. Appl Clay Sci 46:300–304


  16. Trümer A, Ludwig H-M, Rohloff K (2014) Investigation into the application of calcined clays as composite material in cement. ZKG Int 67(9):52–57
  17. Alujas A, Fernández R, Quintana R, Scrivener KL, Martirena F (2015) Pozzolanic reactivity of low grade kaolinitic clays: influence of calcination temperature and impact of calcination products on OPC hydration. Appl Clay Sci 108:94–101


  18. Schulze SE, Rickert J (2019) Suitability of natural calcined clays as supplementary cementitious material. Cem Concr Compos 95:92–97


  19. Lorenz W, Gwosdz W (2003) Handbuch zur geologisch-technischen Bewertung von mineralischen Baurohstoffen (Geologisches Jahrbuch, Sonderhefte, Reihe H, Heft SH 16). Schweizerbart, Stuttgart
  20. Bloodworth A, Highley D, Cowley J (2007) Brick clay—mineral planning factsheet. British Geological Survey. https://www.bgs.ac.uk/downloads/start.cfm?id=1350 . Accessed 29 Aug 2016
  21. Krakow L, Schunke F (2015) Resource efficiency in brick and tile industry (Ziegelindustrie International Sonderdruck). Bauverlag, Gütersloh
  22. Krakow L, Schunke F (2016) Current clay potential in Germany. Part 1: general introduction. Ziegelind Int 2:18–25
  23. Meunier A (2005) Clays. Springer, Berlin
  24. Emmerich K (2000) Spontaneous rehydroxylation of a dehydroxylated cis-vacant montmorillonite. Clays Clay Miner 48:405–408


  25. Bernal, Susan A. / Juenger, Maria C. G. / Ke, Xinyuan / Matthes, Winnie / Lothenbach, Barbara (2017): Characterization of supplementary cementitious materials by thermal analysis. Dans: Materials and Structures, v. 50, n. 1 (février 2017).


  26. Keppler H (1990) Ion exchange reactions between dehydroxylated micas and salt melts and the crystal chemistry of the interlayer cation in micas. Am Mineral 75:529–538
  27. Berodier E, Scrivener K (2014) Understanding the filler effect on the nucleation and growth of C–S–H. J Am Ceram Soc 97:3764–3773


  28. Oey T, Kumar A, Bullard JW, Neithalath N, Sant G (2013) The filler effect: the influence of filler content and surface area on cementitious reaction rates. J Am Ceram Soc 96:1978–1990


  29. Kumar A, Oey T, Falzone G, Huang J, Bauchy M, Balonis M, Neithalath N, Bullard J, Sant G (2017) The filler effect: the influence of filler content and type on the hydration rate of tricalcium silicate. J Am Ceram Soc 100:3316–3328


  30. Odler, I. (1991): Strength of cement (final report). Dans: Materials and Structures, v. 24, n. 2 (mars 1991).


  31. Lothenbach B, Matschei T, Möschner G, Glasser FP (2008) Thermodynamic modelling of the effect of temperature on the hydration and porosity of Portland cement. Cem Concr Res 38:1–18


  32. Lothenbach B, Kulik DA, Matschei T, Balonis M, Baquerizo L, Dilnesa B, Miron GD, Myers RJ (2019) Cemdata18: a chemical thermodynamic database for hydrated Portland cements and alkali-activated materials. Cem Concr Res 115:472–506



  • Informations
    sur cette fiche
  • Reference-ID
  • Publié(e) le:
  • Modifié(e) le: