0
  • DE
  • EN
  • FR
  • Base de données et galerie internationale d'ouvrages d'art et du génie civil

Publicité

Comparing durability and compressive strength predictions of hyperoptimized random forests and artificial neural networks on a small dataset of concrete containing nano SiO2 and RHA

Auteur(s): (Institute of Structural Mechanics and Dynamics, Faculty of Aerospace Engineering and Geodesy, University of Stuttgart, Stuttgart, Germany)
(Institute of Structural Mechanics and Dynamics, Faculty of Aerospace Engineering and Geodesy, University of Stuttgart, Stuttgart, Germany)
(Institute of Structural Mechanics and Dynamics, Faculty of Aerospace Engineering and Geodesy, University of Stuttgart, Stuttgart, Germany)
(Institute of Structural Mechanics and Dynamics, Faculty of Aerospace Engineering and Geodesy, University of Stuttgart, Stuttgart, Germany)
(Institute of Structural Mechanics and Dynamics, Faculty of Aerospace Engineering and Geodesy, University of Stuttgart, Stuttgart, Germany)
Médium: article de revue
Langue(s): anglais
Publié dans: European Journal of Environmental and Civil Engineering
Page(s): 1-20
DOI: 10.1080/19648189.2024.2393881
Structurae ne peut pas vous offrir cette publication en texte intégral pour l'instant. Le texte intégral est accessible chez l'éditeur. DOI: 10.1080/19648189.2024.2393881.
  • Informations
    sur cette fiche
  • Reference-ID
    10802509
  • Publié(e) le:
    10.11.2024
  • Modifié(e) le:
    10.11.2024
 
Structurae coopère avec
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine