0
  • DE
  • EN
  • FR
  • Base de données et galerie internationale d'ouvrages d'art et du génie civil

Publicité

Comparative Study of Predictive Analysis Methods to Estimate Bridge Response

Auteur(s):



Médium: article de revue
Langue(s): anglais
Publié dans: Transportation Research Record: Journal of the Transportation Research Board, , n. 9, v. 2673
Page(s): 365-376
DOI: 10.1177/0361198119843866
Abstrait:

Monitoring bridge performance is crucial to ensure safety and allocate resources in a cost-effective manner. This paper aims to reduce the gap between researchers and practitioners by showing how predictive analytics can be employed in the process of distilling operational information out of bridge monitoring data. Furthermore, it has the goal to aid infrastructure owners and managers in evaluating bridge performance over time and making data-driven decisions to prolong the life of the structure. To achieve this goal, the paper presents a comparative study of three predictive analysis models to estimate bridge response to heavy trucks: multilinear regression, artificial neural network, and regression tree. Following this comparison, an alternative strategy, based on the analysis of influential observations, is proposed. This approach brings together predictive power with other important capabilities such as explanatory capabilities and interpretability. The test bed structure is a short-span highway bridge which was monitored for 3 years using weigh-in-motion (traffic data) and structural health monitoring (bridge data) systems.

Structurae ne peut pas vous offrir cette publication en texte intégral pour l'instant. Le texte intégral est accessible chez l'éditeur. DOI: 10.1177/0361198119843866.
  • Informations
    sur cette fiche
  • Reference-ID
    10777949
  • Publié(e) le:
    12.05.2024
  • Modifié(e) le:
    12.05.2024
 
Structurae coopère avec
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine