0
  • DE
  • EN
  • FR
  • Base de données et galerie internationale d'ouvrages d'art et du génie civil

Publicité

Comparative Evaluation of Predicting Energy Consumption of Absorption Heat Pump with Multilayer Shallow Neural Network Training Algorithms

Auteur(s): ORCID
ORCID
ORCID
Médium: article de revue
Langue(s): anglais
Publié dans: Buildings, , n. 1, v. 12
Page(s): 13
DOI: 10.3390/buildings12010013
Abstrait:

The performance of various multilayer neural network algorithms to predict the energy consumption of an absorption chiller in an air conditioning system under the same conditions was compared and evaluated in this study. Each prediction model was created using 12 representative multilayer shallow neural network algorithms. As training data, about a month of actual operation data during the heating period was used, and the predictive performance of 12 algorithms according to the training size was evaluated. The prediction results indicate that the error rates using the measured values are 0.09% minimum, 5.76% maximum, and 1.94 standard deviation (SD) for the Levenberg–Marquardt backpropagation model and 0.41% minimum, 5.05% maximum, and 1.68 SD for the Bayesian regularization backpropagation model. The conjugate gradient with Polak–Ribiére updates backpropagation model yielded lower values than the other two models, with 0.31% minimum, 5.73% maximum, and 1.76 SD. Based on the results for the predictive performance evaluation index, CvRMSE, all other models (conjugate gradient with Fletcher–Reeves updates backpropagation, one-step secant backpropagation, gradient descent with momentum and adaptive learning rate backpropagation, gradient descent with momentum backpropagation) except for the gradient descent backpropagation model yielded results that satisfy ASHRAE (American Society of Heating, Refrigerating and Air-Conditioning Engineers) Guideline 14. The results of this study confirm that the prediction performance may differ for each multilayer neural network training algorithm. Therefore, selecting the appropriate model to fit the characteristics of a specific project is essential.

Copyright: © 2021 by the authors; licensee MDPI, Basel, Switzerland.
License:

Cette oeuvre a été publiée sous la license Creative Commons Attribution 4.0 (CC-BY 4.0). Il est autorisé de partager et adapter l'oeuvre tant que l'auteur est crédité et la license est indiquée (avec le lien ci-dessus). Vous devez aussi indiquer si des changements on été fait vis-à-vis de l'original.

  • Informations
    sur cette fiche
  • Reference-ID
    10648363
  • Publié(e) le:
    07.01.2022
  • Modifié(e) le:
    01.06.2022
 
Structurae coopère avec
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine