Comparative Analysis of Dynamic Response of Damaged Wharf Frame Structure under the Combined Action of Ship Collision Load and Other Static Loads
Auteur(s): |
Mingjie Zhao
Guoyin Wu Kui Wang |
---|---|
Médium: | article de revue |
Langue(s): | anglais |
Publié dans: | Buildings, 31 juillet 2022, n. 8, v. 12 |
Page(s): | 1131 |
DOI: | 10.3390/buildings12081131 |
Abstrait: |
In the long-term service, the wharf structure can be damaged by ship impact, wave load, and even earthquake, which will affect the safe production and smooth operation of the port. Based on the theory of structural dynamic response analysis and wavelet packet analysis principle, this paper established the damage identification index of the wharf frame structure. Combining with the finite element method and the dynamic response theory of the wharf frame structure, it set up a finite element analysis model of the dynamic response of the wharf frame structure under the action of multiple loads, with the impact load of the ship as the dynamic load under the non-damaged state and the different damaged states. In addition, the characteristic response point location was drawn up. Furthermore, the transient dynamic analysis and damage index analysis of the frame structure in the non-damaged and damaged state were conducted respectively. In addition, the model test and numerical simulation results were combined to compare and analyze the identification of damage indicators, so as to verify the identification effect of the established damage identification indicators on the structural damage, which lays a foundation for the next step of structural damage identification. |
Copyright: | © 2022 by the authors; licensee MDPI, Basel, Switzerland. |
License: | Cette oeuvre a été publiée sous la license Creative Commons Attribution 4.0 (CC-BY 4.0). Il est autorisé de partager et adapter l'oeuvre tant que l'auteur est crédité et la license est indiquée (avec le lien ci-dessus). Vous devez aussi indiquer si des changements on été fait vis-à-vis de l'original. |
8.45 MB
- Informations
sur cette fiche - Reference-ID
10688506 - Publié(e) le:
13.08.2022 - Modifié(e) le:
10.11.2022