0
  • DE
  • EN
  • FR
  • Base de données et galerie internationale d'ouvrages d'art et du génie civil

Publicité

Combination forecast model for concrete dam displacement considering residual correction

Auteur(s):



Médium: article de revue
Langue(s): anglais
Publié dans: Structural Health Monitoring, , n. 1, v. 18
Page(s): 232-244
DOI: 10.1177/1475921717748608
Abstrait:

In conventional dam displacement monitoring models, forecast precision is below the standard, the fitting residual sequence contains chaotic components, and information mining of dam prototype observation data is limited. In consideration of the chaotic characteristics of the fitting residual sequence in regression model, the multi-scale wavelet analysis is used to decompose and reconstruct the residual sequence in this study; back propagation neural network and autoregressive integrated moving average model are used to forecast the reconstructed residual sequence by identifying the high-frequency and low-frequency characteristics of signals. By superimposing the residual forecast value with the forecast value of regression model, the combination forecast model for concrete dam displacement considering residual correction is proposed. Examples show that, compared with conventional models, the proposed combination model is better in fitting precision and convergence speed. Forecast capability is significantly improved for dam displacement forecast when effective components contained in residual sequence are considered. A new method of displacement forecast for high slope and other hydraulic structures is presented.

Structurae ne peut pas vous offrir cette publication en texte intégral pour l'instant. Le texte intégral est accessible chez l'éditeur. DOI: 10.1177/1475921717748608.
  • Informations
    sur cette fiche
  • Reference-ID
    10562127
  • Publié(e) le:
    11.02.2021
  • Modifié(e) le:
    19.02.2021
 
Structurae coopère avec
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine