0
  • DE
  • EN
  • FR
  • Base de données et galerie internationale d'ouvrages d'art et du génie civil

Publicité

Cognitive Distraction State Recognition of Drivers at a Nonsignalized Intersection in a Mixed Traffic Environment

Auteur(s): ORCID
ORCID
ORCID
ORCID

Médium: article de revue
Langue(s): anglais
Publié dans: Advances in Civil Engineering, , v. 2021
Page(s): 1-16
DOI: 10.1155/2021/6676807
Abstrait:

Distracted driving has become a growing traffic safety concern. With advances in autonomous driving and connected vehicle technology, a mixture of various types of intelligent vehicles will become normal in the near future, while more factors that may cause driver cognitive distraction are emerging. However, there are rarely studies on distracted driving in mixed traffic environments. To fill this gap, we conducted a natural driving experiment with three representative events at a nonsignalized intersection in a mixed traffic environment and proposed a novel method of identifying cognitive distraction based on bidirectional long short_term memory (Bi-LSTM) with attention mechanism. Forty participants were recruited for each event, who completed three different cognitive distraction experiments induced by three different secondary tasks in contrast with a normal driving process when passing a nonsignalized intersection. Related driving performance and eye movement data were collected to train and test the Bi-LSTM with attention mechanism model. Compared with the support vector machine (SVM) model, its recognition accuracy rate is 94.33%, which is 3.83% higher than that of the SVM in the total event, which has reasonable applicability for distraction recognition in a mixed traffic environment. Potential applications of this model include distraction alarm and autonomous driving assistance systems, which could avoid road traffic accidents.

Copyright: © 2021 Qiang Hua et al.
License:

Cette oeuvre a été publiée sous la license Creative Commons Attribution 4.0 (CC-BY 4.0). Il est autorisé de partager et adapter l'oeuvre tant que l'auteur est crédité et la license est indiquée (avec le lien ci-dessus). Vous devez aussi indiquer si des changements on été fait vis-à-vis de l'original.

  • Informations
    sur cette fiche
  • Reference-ID
    10589740
  • Publié(e) le:
    08.03.2021
  • Modifié(e) le:
    02.06.2021
 
Structurae coopère avec
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine